Graph Theory: Euler Paths, Euler Circuits
 Contemporary Math

Josh Engwer

TTU
23 July 2015

Graphs, Vertices, Edges (Definition)

Definition

(Graph, Vertex, Edge)
A graph consists of a finite set of points, called vertices, and lines/curves, called edges, that join pairs of vertices.

Isolated Vertices, Loops (Definition)

Definition

(Isolated Vertex, Loop)
An isolated vertex has no edges joined to it. A loop is an edge which joins one vertex with itself.

Connected Graphs \& Bridges (Definition)

Definition

(Connected Graph)
A graph is connected if it's possible to travel from any vertex to any other vertex of the graph by moving along successive edges.

Definition

(Bridge)
An edge of a connected graph is a bridge if removing the edge causes the graph to no longer be connected.

Connected Graph

Degree of a Vertex (Definition)

Definition

(Degree of a Vertex)
The degree of a vertex is the \# of edges joined to that vertex.
Loops count as two edges.
The degree of an isolated vertex is defined to be zero.

Odd \& Even Vertices (Definition)

Definition

(Odd Vertex, Even Vertex)
An odd vertex is a vertex with an odd degree.
An even vertex is a vertex with an even degree.

Euler Paths \& Euler Circuits (Definition)

Definition

(Path, Euler Path, Euler Circuit)
A path is a sequence of consecutive edges in which no edge is repeated.
The length of a path is the \# of edges in the path.
An Euler path is a path that contains all edges of the graph.
An Euler circuit is an Euler path that begins \& ends at the same vertex.

Euler Path from D to E: DCAABDE

Euler Paths \& Euler Circuits (Definition)

Definition

(Path, Euler Path, Euler Circuit)
A path is a sequence of consecutive edges in which no edge is repeated.
The length of a path is the \# of edges in the path.
An Euler path is a path that contains all edges of the graph.
An Euler circuit is an Euler path that begins \& ends at the same vertex.

Euler Circuit starting at B: BAACDEDB

Tracing a Graph (Definition)

Definition

(Tracing a Graph)
To trace a graph means to begin at a vertex \& draw the entire graph provided:
(1) The pencil is never lifted off the paper
(2) Each edge is not traversed more than once

A graph that can be traced as described above is called traceable.

Traceable Graph (starting from any vertex)

Tracing a Graph (Definition)

Definition

(Tracing a Graph)
To trace a graph means to begin at a vertex \& draw the entire graph provided:
(1) The pencil is never lifted off the paper
(2) Each edge is not traversed more than once

A graph that can be traced as described above is called traceable.

> Traceable Graph (starting from A or D)

Tracing a Graph (Definition)

Definition

(Tracing a Graph)
To trace a graph means to begin at a vertex \& draw the entire graph provided:
(1) The pencil is never lifted off the paper
(2) Each edge is not traversed more than once

A graph that can be traced as described above is called traceable.

Non-Traceable Graph

Existence of Euler Path/Circuit (Theorem)

Theorem

(Euler's Theorem)
A graph can be traced if it's connected and has zero or two odd vertices.

Corollary

(Corollary to Euler's Theorem)
A graph is traceable if it contains an Euler path or Euler circuit.

Corollary

(Corollary to Euler's Theorem)
(a) Suppose a connected graph has two odd vertices.

Then, the tracing must begin at one odd vertex and end at the other.
i.e. The tracing is an Euler path from one odd vertex to the other.
(b) Suppose a connected graph has zero odd vertices.

Then, the tracing must begin and end at the same vertex.
i.e. The tracing is an Euler circuit.

Finding an Euler Circuit (Fleury's Algorithm)

Very often, an Euler circuit can be found painlessly by trial-and-error. However, for "very large" graphs, trial-and-error is not feasible.

Fleury's Algorithm will systematically find an Euler circuit:

Proposition

(Fluery's Algorithm for finding an Euler Circuit)
INPUT: A connected graph with zero odd vertices. (i.e. all vertices are even)
(1) Start at any vertex.
(2) Traverse an edge, but not a bridge unless there's no alternative.

Mark/erase/cover-up the traversed edge.
(3) Repeat (2) until there's no more edges to traverse.

OUTPUT: An Euler circuit.

Finding an Euler Path (Fleury's Algorithm)

Very often, an Euler path can be found painlessly by trial-and-error. However, for "very large" graphs, trial-and-error is not feasible. Fleury's Algorithm will systematically find an Euler path:

Proposition

(Fluery's Algorithm for finding an Euler Path)
INPUT: A connected graph with two odd vertices.
(1) Start at one of the two odd vertices.
(2) Traverse an edge, but not a bridge unless there's no alternative.

Mark/erase/cover-up the traversed edge.
(3) Repeat (2) until there's no more edges to traverse.

OUTPUT: An Euler path from one odd vertex to the other odd vertex.

Fin.

