Graph Theory: Directed Graphs (Digraphs)
 Contemporary Math

Josh Engwer

TTU

24 July 2015

Directed Graphs (Definition)

Definition

(Directed Edge, Directed Graph)
A directed edge (AKA an arc) is an edge with a direction. A directed graph is a graph in which all edges are directed.

Directed Graph

Directed Paths (Definition)

Definition

(Directed Path)
A directed path from vertex X to vertex Y in a directed graph is a sequence of edges starting at X, following the edges in the prescribed directions, and ending at Y.
The length of a directed path is the \# of edges along that path.
The length of a directed loop is one (not two).
REMARK: Remember that edges cannot be repeated in a path.

Directed Paths (Example)

WEX 4-3-1: Given the following digraph:
(a) Find a directed path of length 1 from B to D.

Directed Paths (Example)

WEX 4-3-1: Given the following digraph:
(a) Find a directed path of length 1 from B to D.

Directed Paths (Example)

WEX 4-3-1: Given the following digraph:
(b) Find a directed path of length 2 from B to D.

Directed Paths (Example)

WEX 4-3-1: Given the following digraph:
(b) Find a directed path of length 2 from B to D.

Directed Paths (Example)

WEX 4-3-1: Given the following digraph:
(c) Find a directed path of length 3 from B to D.

Directed Paths (Example)

WEX 4-3-1: Given the following digraph:
(c) Find a directed path of length 3 from B to D.

Directed Paths (Example)

WEX 4-3-1: Given the following digraph:
(d) Find a directed path of length 4 from B to D.

Directed Paths (Example)

WEX 4-3-1: Given the following digraph:
(d) Find a directed path of length 4 from B to D.

Directed Paths (Example)

WEX 4-3-1: Given the following digraph:
(e) Find a directed path (of any length) from D to B.

Directed Paths (Example)

WEX 4-3-1: Given the following digraph:
(e) Find a directed path (of any length) from D to B.

Incidence Matrix of a Digraph (Definition)

Definition

(Incidence Matrix)
An incidence matrix of a digraph is a rectangular array of numbers where the entries are either 0 or 1 , indicating whether it's possible to traverse exactly one edge from one vertex (row) to another vertex (column).

Directed Paths (Example)

WEX 4-3-2: Find the corresponding incidence matrix to the digraph:

Directed Paths (Example)

WEX 4-3-2: Find the corresponding incidence matrix to the digraph:

Directed Paths (Example)

WEX 4-3-2: Find the corresponding incidence matrix to the digraph:

Directed Paths (Example)

WEX 4-3-2: Find the corresponding incidence matrix to the digraph:

Directed Paths (Example)

WEX 4-3-2: Find the corresponding incidence matrix to the digraph:

A
B
C
D
$E$$\left[\begin{array}{ccccc}A & B & C & D & E \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

Directed Paths (Example)

WEX 4-3-2: Find the corresponding incidence matrix to the digraph:

A
B
C
D
$E$$\left[\begin{array}{lllll}A & B & C & D & E \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0\end{array}\right]$

Directed Paths (Example)

WEX 4-3-2: Find the corresponding incidence matrix to the digraph:

Fin.

