Percentages

Contemporary Math

Josh Engwer

TTU

07 July 2015

Percent (Definition)

- Percents are pervasive in Finance (this chapter), Probability \& Statistics.

Percent (Conversions)

PERCENT	DECIMAL	FRACTION
2%	0.02	$\frac{2}{100}$
12%	0.12	$\frac{12}{100}$
243%	2.43	$\frac{243}{100}$

Percent (Conversions)

PERCENT	DECIMAL	FRACTION
2.5%	0.025	$\frac{2.5}{100}=\frac{25}{1000}$
12.5%	0.125	$\frac{12.5}{100}=\frac{125}{1000}$
243.5%	2.435	$\frac{243.5}{100}=\frac{2435}{1000}$

Percent (Conversions)

PERCENT	DECIMAL	FRACTION
2.57%	0.0257	$\frac{2.57}{100}=\frac{257}{10000}$
12.57%	0.1257	$\frac{12.57}{100}=\frac{1257}{10000}$
243.57%	2.4357	$\frac{243.57}{100}=\frac{24357}{10000}$

Percent (Conversions)

PERCENT	DECIMAL	FRACTION
0.2%	0.002	$\frac{0.2}{100}=\frac{2}{1000}$
0.12%	0.0012	$\frac{0.12}{100}=\frac{12}{10000}$
0.243%	0.00243	$\frac{0.243}{100}=\frac{243}{100000}$

Percent (Conversions)

PERCENT	DECIMAL	FRACTION
0.02%	0.0002	$\frac{0.02}{100}=\frac{2}{10000}$
0.012%	0.00012	$\frac{0.012}{100}=\frac{12}{100000}$
0.0243%	0.000243	$\frac{0.0243}{100}=\frac{243}{1000000}$

Percents (Example)

WEX 8-1-1: In a bag of 24 blocks, 37.5% of the blocks are green. How many blocks are green?

Percents (Example)

WEX 8-1-1: In a bag of 24 blocks, 37.5% of the blocks are green. How many blocks are green?

$$
0.375(24)=9 \Longrightarrow \text { There are } 9 \text { green blocks }
$$

$\binom{$ The symbol \Longrightarrow is read "which implies that" }{ More will be said while covering Logic (Ch4) }

Percents (Example)

WEX 8-1-2: In a bag of 21 blocks, 8 are red. What percent of the blocks are red?

Percents (Example)

WEX 8-1-2: In a bag of 21 blocks, 8 are red. What percent of the blocks are red?

$$
\frac{8}{21}=0.380952381 \approx 0.3810 \Longrightarrow 38.10 \% \text { of the blocks are red }
$$

Percent Change (Definition)

Definition

$$
\begin{gathered}
(\text { Percent Change })=\frac{(\text { New Amount })-(\text { Base Amount })}{(\text { Base Amount })} \\
(\text { New Amount })=(\text { Base Amount }) \times[1+(\text { Percent Change })] \\
(\text { Base Amount })=\frac{(\text { New Amount })}{1+(\text { Percent } \text { Change })}
\end{gathered}
$$

IMPORTANT: Always write the (Percent Change) quantity in decimal form.
"Percent Increase" means a positive percent change. "Percent Decrease" means a negative percent change.

REMARK: Books often write "percent of change" - l'll never write or say "of".

Percent Change (Lexicon)

The following phrases all represent a 15% increase:

- up 15%
- buy 15% of
- 15% rise
- 15\% pay raise
- 15\% markup
- 15\% appreciation
- 15% tax
- 15% inflation

The following phrases all represent a 9\% decrease:

- down 9\%
- sell 9% of
- 9\% fall
- 9\% pay cut
- 9\% markdown
- 9\% depreciation
- 9\% deflation

Percent Change (Example)

WEX 8-1-3:

A car dealership with 150 cars sells 12% of its inventory in one month. How many cars remain after one month?

Percent Change (Example)

WEX 8-1-3:

A car dealership with 150 cars sells 12% of its inventory in one month. How many cars remain after one month?

$$
\begin{aligned}
(\text { New Amount }) & =(\text { Base Amount }) \times[1+(\text { Percent Change })] \\
& =150[1+(-0.12)] \\
& =150(1-0.12) \\
& =150(0.88) \\
& =132
\end{aligned}
$$

$\therefore \quad 132$ cars remain after one month

Percent Change (Example)

WEX 8-1-4:

Bob purchases some stock in March of 2013. Six months later, the stock's worth $\$ 2000$, which is 23% higher than in March. How much was the stock worth in March?

Percent Change (Example)

WEX 8-1-4:

Bob purchases some stock in March of 2013.
Six months later, the stock's worth \$2000, which is 23% higher than in March. How much was the stock worth in March?

$$
\begin{aligned}
(\text { Base Amount }) & =\frac{(\text { New Amount })}{1+(\text { Percent Change })} \\
& =\frac{2000}{1+0.23} \\
& =\frac{2000}{1.23} \\
& =1626.016260 \\
& \approx 1626.02 \text { (Round to nearest penny) }
\end{aligned}
$$

[^0]
Percent Change (Example)

WEX 8-1-5:

The price of gasoline increases from $\$ 3.92 /$ gallon to $\$ 4.27 /$ gallon in 3 weeks. What is the percent of increase in the price of gasoline?

Percent Change (Example)

WEX 8-1-5:

The price of gasoline increases from $\$ 3.92 /$ gallon to $\$ 4.27 /$ gallon in 3 weeks. What is the percent of increase in the price of gasoline?

$$
\begin{aligned}
(\text { Percent Change }) & =\frac{(\text { New Amount })-(\text { Base Amount })}{(\text { Base Amount })} \\
& =\frac{4.27-3.92}{3.92} \\
& =\frac{0.35}{3.92} \\
& =0.089285714 \\
& \approx 0.0893 \text { (Round decimal to four decimal places...) } \\
& =8.93 \% \text { (...so that the percent has two decimal places.) } \\
\therefore & \text { The price of gasoline increased } 8.93 \%
\end{aligned}
$$

Fin

Fin.

[^0]: \therefore The stock was worth $\$ 1626.02$ in March

