Annuities
 Contemporary Math

Josh Engwer

TTU

08 July 2015

Annuity (Definition)

Suppose you wish to make a very expensive purchase in the future, such as a car, a mansion, or a vacation.
Then you need to start saving for it now by setting aside a reasonable fixed amount of money regularly.
So, what should you do??

ESTABLISH AN ANNUITY!

Definition

An (ordinary) annuity is an interest-bearing account into which the same payment is made at the end of every compounding period.

I'll never say "ordinary annuity" - just "annuity."

- A college trust fund is an annuity.
- A child's allowance is not an annuity since allowances don't earn interest.

Sinking Fund (Definition)

Definition

A sinking fund is an account into which regular payments are made in order to save some specified amount in the future.

REMARK: A sinking fund is just a special type of annuity.

Typical Sinking Fund Scenarios:

- Saving for a $\$ 2000$ Gaming Computer
- Saving for a $\$ 5000$ Vacation Trip
- Saving for a \$8000 Down Payment on a Condominium
- Saving for a $\$ 25,000$ Down Payment to Start a Business
- Saving \$500,000 for Retirement

Future \& Present Value of an Annuity

Proposition

(Future Value of an Annuity)

$$
F V=\frac{m R}{r}\left[\left(1+\frac{r}{m}\right)^{n}-1\right]
$$

where
$F V \equiv$ Future Value of the Annuity
$R \equiv$ Payment into the Annuity each Compounding Period
$r \equiv$ Annual Interest Rate
$m \equiv$ Number of Compounding Periods
$t \equiv$ Time (in years)
$n \equiv$ Number of Payments $(n=m t)$

Proposition

(Present Value of an Annuity)
To find the present value of an annuity, plugin all the known quantities into the above formula and solve for R.

Future Value of an Annuity (Example)

WEX 8-4-1:

You are making monthly payments of $\$ 60$ into an annuity that pays 6% annual interest. How much money is in the annuity after 10 years?

Future Value of an Annuity (Example)

WEX 8-4-1:

You are making monthly payments of $\$ 60$ into an annuity that pays 6% annual interest. How much money is in the annuity after 10 years?

$$
R=\$ 60 / \text { month, } r=0.06, m=12, t=10 \mathrm{yrs}, n=m t=120
$$

Future Value of an Annuity (Example)

WEX 8-4-1:

You are making monthly payments of $\$ 60$ into an annuity that pays 6% annual interest. How much money is in the annuity after 10 years?

$$
R=\$ 60 / \text { month }, r=0.06, m=12, t=10 \mathrm{yrs}, n=m t=120
$$

$$
F V=\frac{m R}{r}\left[\left(1+\frac{r}{m}\right)^{n}-1\right]
$$

Future Value of an Annuity (Example)

WEX 8-4-1:

You are making monthly payments of $\$ 60$ into an annuity that pays 6% annual interest. How much money is in the annuity after 10 years?

$$
\begin{gathered}
R=\$ 60 / \text { month, } r=0.06, m=12, t=10 \mathrm{yrs}, n=m t=120 \\
F V=\frac{m R}{r}\left[\left(1+\frac{r}{m}\right)^{n}-1\right]=\frac{(12)(60)}{0.06}\left[\left(1+\frac{0.06}{12}\right)^{120}-1\right] \\
=12000\left[(1.005)^{120}-1\right]=12000(0.819396734)=9832.760808 \approx \$ 9832.76
\end{gathered}
$$

Present Value of an Annuity (Example)

WEX 8-4-2:

Find the monthly payment needed to have a sinking fund accumulate to $\$ 100,000$ in 10 years if the annual interest rate is 6%.

Present Value of an Annuity (Example)

WEX 8-4-2:

Find the monthly payment needed to have a sinking fund accumulate to $\$ 100,000$ in 10 years if the annual interest rate is 6%.

$$
F V=\$ 100000, r=0.06, m=12, t=10 \mathrm{yrs}, n=m t=120
$$

Present Value of an Annuity (Example)

WEX 8-4-2:

Find the monthly payment needed to have a sinking fund accumulate to $\$ 100,000$ in 10 years if the annual interest rate is 6%.

$$
\begin{array}{rlrl}
F V & =\$ 100000, r=0.06, m=12, t=10 \mathrm{yrs}, n=m t=120 \\
F V & =\frac{m R}{r}\left[\left(1+\frac{r}{m}\right)^{n}-1\right] & & \leftarrow \text { (Identify relevant formula) } \\
100000 & =R\left(\frac{12}{0.06}\right)\left[\left(1+\frac{0.06}{12}\right)^{120}-1\right] & \leftarrow \text { (Plugin known quantities) } \\
100000 & =R(200)\left[(1.005)^{120}-1\right] & & \leftarrow \text { (Simplify) } \\
100000 & =R(200)(0.819396734) & & \leftarrow \text { (Simplify) } \\
100000 & =R(163.8793468) & & \leftarrow \text { (Simplify) } \\
610.205019 & =R & & \leftarrow \text { (Solve for } R) \\
\$ 610.21 & =R & & \leftarrow \text { (Round) }
\end{array}
$$

$\therefore R=\$ 610.21 /$ month

Fin.

