Amortization

Contemporary Math

Josh Engwer

TTU

09 July 2015

Amortization (Definition)

Definition

Paying off a loan (plus interest) with regular equal payments is called amortization (AKA financing).

Such a loan is called an amortized loan.

> AMORTIZED LOAN \mid REGULAR PAYMENTS
> 30-year Home Mortgage 360 equal Monthly Payments 15-year Home Mortgage 180 equal Monthly Payments 48-month Car Note 48 equal Monthly Payments

The "Dual View" of Amortization

THE SETUP: A person (consumer) borrows P dollars at r annual interest rate from a bank \& agrees to pay off the loan by paying R dollars m times a year for t years $(n=m t)$.

- THE TRANSACTION CAN BE VIEWED TWO WAYS -

BANKER'S POINT OF VIEW:
Account Compounded Monthly: $\quad F V=P\left(1+\frac{r}{m}\right)^{n}$

CONSUMER'S POINT OF VIEW:
Sinking Fund Compounded Monthly: $F V=\frac{m R}{r}\left[\left(1+\frac{r}{m}\right)^{n}-1\right]$

Finding Payments on an Amortized Loan

Proposition

(Finding Payments on an Amortized Loan)
Solve Equation $\quad P\left(1+\frac{r}{m}\right)^{n}=\frac{m R}{r}\left[\left(1+\frac{r}{m}\right)^{n}-1\right] \quad$ for R
where
$P \equiv$ Amount Borrowed (Principal)
$R \equiv$ Payment Amount per Period
$r \equiv$ Annual Interest Rate
$m \equiv$ Number of Periodic Payments per Year
$t \equiv$ Length of Time of Loan (in years)
$n \equiv$ Number of Payments $(n=m t)$

Finding Present Value of an Annuity via Amortization

Proposition

(Finding the Present Value of an Annuity)

Solve Equation $\quad P\left(1+\frac{r}{m}\right)^{n}=\frac{m R}{r}\left[\left(1+\frac{r}{m}\right)^{n}-1\right] \quad$ for P
where
$P \equiv$ Amount Borrowed (Principal)
$R \equiv$ Payment Amount per Period
$r \equiv$ Annual Interest Rate
$m \equiv$ Number of Periodic Payments per Year
$t \equiv$ Length of Time of Loan (in years)
$n \equiv$ Number of Payments $(n=m t)$

Amortization Schedule (Definition)

Payments on an amortized loan partly pay off the principal \& partly pay interest on the outstanding principal.
Over time, each successive payment pays more toward principal \& less toward interest.

Definition

An amortization schedule is a list showing payment-by-payment how much is going towards the principal \& interest.
The key formulas for building an amortization schedule are:

- (Monthly Interest Rate $)=\frac{1}{12} \times($ Annual Interest Rate $)$

For each month:

- $($ Interest Paid $)=($ Last Balance $) \times($ Monthly Interest Rate $) \times(1$ Month $)$
- $($ Monthly Payment $)-($ Interest Paid $)=($ Paid on Principal $)$
- $($ New Balance $)=($ Last Balance $)-($ Paid on Principal $)$

Amortization Schedule (Example)

\$10,000 Loan at 18\% Annual Interest for 4 Years

	PAYMENT NUMBER	MONTHLY PAYMENT	INTEREST PAID	PAID ON PRINCIPAL	REMAININC BALANCE
Initial					$\$ 10,000.00$
Month 1	1	$\$ 293.75$	$\$ 150.00$	$\$ 143.75$	$\$ 9856.25$
Month 2	2	$\$ 293.75$	$\$ 147.84$	$\$ 145.91$	$\$ 9710.34$
Month 3	3	$\$ 293.75$	$\$ 145.66$	$\$ 148.09$	$\$ 9562.25$
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
End Year 1	12	$\$ 293.75$	$\$ 124.42$	$\$ 169.33$	$\$ 8125.33$
End Year 2	24	$\$ 293.75$	$\$ 91.30$	$\$ 202.45$	$\$ 5883.93$
End Year 3	36	$\$ 293.75$	$\$ 51.69$	$\$ 242.06$	$\$ 3204.08$
End Year 4	48	$\$ 293.75$	$\$ 4.34$	$\$ 289.41$	$\$ 0.00$

$($ Interest Paid $)=($ Last Balance $) \times($ Monthly Interest Rate $) \times(1$ Month $)$
$($ Monthly Payment $)-($ Interest Paid $)=($ Paid on Principal $)$
$($ New Balance $)=($ Last Balance $)-($ Paid on Principal $)$

Refinancing a Loan

Suppose you have to borrow money (for a house, say) at a high interest rate. Moreover, you notice a year later that the interest rates decline markedly. So now, you want to pay off the remaining debt on the loan by taking out a second loan at the lower interest rate.
This is called refinancing the loan.

Definition

Refinancing a loan is the process of taking out a second loan to pay off the first loan, but at a lower interest rate.

Why Refinance??

- Refinancing lowers the size of the monthly payments \& reduces the total interest paid.

Refinancing a Loan (Why it Matters)

MONTHLY PAYMENTS ON A $\$ 1000.00$ LOAN

INTEREST RATE	3 YEARS	10 YEARS	20 YEARS	30 YEARS
4% annual	$\$ 29.53$	$\$ 10.12$	$\$ 6.06$	$\$ 4.77$
6% annual	$\$ 30.42$	$\$ 11.10$	$\$ 7.16$	$\$ 6.00$
8% annual	$\$ 31.34$	$\$ 12.13$	$\$ 8.36$	$\$ 7.34$
10% annual	$\$ 32.27$	$\$ 13.22$	$\$ 9.65$	$\$ 8.78$
12% annual	$\$ 33.21$	$\$ 14.35$	$\$ 11.01$	$\$ 10.29$

Refinancing a Loan (Why it Matters)

MONTHLY PAYMENTS ON A $\$ 1000.00$ LOAN

INTEREST RATE	3 YEARS	10 YEARS	20 YEARS	30 YEARS
4% annual	$\$ 29.53$	$\$ 10.12$	$\$ 6.06$	$\$ 4.77$
6% annual	$\$ 30.42$	$\$ 11.10$	$\$ 7.16$	$\$ 6.00$
8% annual	$\$ 31.34$	$\$ 12.13$	$\$ 8.36$	$\$ 7.34$
10% annual	$\$ 32.27$	$\$ 13.22$	$\$ 9.65$	$\$ 8.78$
12% annual	$\$ 33.21$	$\$ 14.35$	$\$ 11.01$	$\$ 10.29$

Savings when refinancing from 6\% to 4% for 3 years:
$(3 \mathrm{yrs})(12$ months $/ \mathrm{yr})[(\$ 30.42 /$ month $)-(\$ 29.53 /$ month $)]=\$ 32.04$

Refinancing a Loan (Why it Matters)

MONTHLY PAYMENTS ON A $\$ 1000.00$ LOAN

INTEREST RATE	3 YEARS	10 YEARS	20 YEARS	30 YEARS
4% annual	$\$ 29.53$	$\$ 10.12$	$\$ 6.06$	$\$ 4.77$
6% annual	$\$ 30.42$	$\$ 11.10$	$\$ 7.16$	$\$ 6.00$
8% annual	$\$ 31.34$	$\$ 12.13$	$\$ 8.36$	$\$ 7.34$
10% annual	$\$ 32.27$	$\$ 13.22$	$\$ 9.65$	$\$ 8.78$
12% annual	$\$ 33.21$	$\$ 14.35$	$\$ 11.01$	$\$ 10.29$

Savings when refinancing from 12% to 4% for 3 years:
$(3 \mathrm{yrs})(12$ months $/ \mathrm{yr})[(\$ 33.21 /$ month $)-(\$ 29.53 /$ month $)]=\$ 132.48$

Refinancing a Loan (Why it Matters)

MONTHLY PAYMENTS ON A \$1000.00 LOAN

INTEREST RATE	3 YEARS	10 YEARS	20 YEARS	30 YEARS
4% annual	$\$ 29.53$	$\$ 10.12$	$\$ 6.06$	$\$ 4.77$
6% annual	$\$ 30.42$	$\$ 11.10$	$\$ 7.16$	$\$ 6.00$
8% annual	$\$ 31.34$	$\$ 12.13$	$\$ 8.36$	$\$ 7.34$
10% annual	$\$ 32.27$	$\$ 13.22$	$\$ 9.65$	$\$ 8.78$
12% annual	$\$ 33.21$	$\$ 14.35$	$\$ 11.01$	$\$ 10.29$

Savings when refinancing from 12% to 4% for 30 years:
$(30 \mathrm{yrs})(12$ months $/ \mathrm{yr})[(\$ 10.29 /$ month $)-(\$ 4.77 /$ month $)]=\$ 1987.20$!!!
So, you end up saving almost double the loan amount!!

Refinancing a Loan (Why it Matters)

MONTHLY PAYMENTS ON A $\$ 1000.00$ LOAN

INTEREST RATE	3 YEARS	10 YEARS	20 YEARS	30 YEARS
4% annual	$\$ 29.53$	$\$ 10.12$	$\$ 6.06$	$\$ 4.77$
6% annual	$\$ 30.42$	$\$ 11.10$	$\$ 7.16$	$\$ 6.00$
8% annual	$\$ 31.34$	$\$ 12.13$	$\$ 8.36$	$\$ 7.34$
10% annual	$\$ 32.27$	$\$ 13.22$	$\$ 9.65$	$\$ 8.78$
12% annual	$\$ 33.21$	$\$ 14.35$	$\$ 11.01$	$\$ 10.29$

Savings when refinancing from 6\% to 4\% for 30 years:
$(30 \mathrm{yrs})(12$ months $/ \mathrm{yr})[(\$ 6.00 /$ month $)-(\$ 4.77 /$ month $)]=\$ 442.80 \quad$!!!
So, you end up saving almost half the loan amount!!
So, reducing the interest rate by a little can result in big savings long-term!

Fin

Fin.

