Amortization

Contemporary Math

Josh Engwer

TTU

09 July 2015

Josh Engwer (TTU)

Definition

Paying off a loan (plus interest) with regular equal payments is called **amortization** (AKA **financing**).

Such a loan is called an **amortized loan**.

AMORTIZED LOAN	REGULAR PAYMENTS
30-year Home Mortgage	360 equal Monthly Payments
15-year Home Mortgage	360 equal Monthly Payments 180 equal Monthly Payments
48-month Car Note	48 equal Monthly Payments

<u>THE SETUP</u>: A person (consumer) borrows *P* dollars at *r* annual interest rate from a bank & agrees to pay off the loan by paying *R* dollars *m* times a year for *t* years (n = mt).

- THE TRANSACTION CAN BE VIEWED TWO WAYS -

BANKER'S POINT OF VIEW: Account Compounded Monthly: $FV = P\left(1 + \frac{r}{m}\right)^n$

CONSUMER'S POINT OF VIEW:

Sinking Fund Compounded Monthly: $FV = \frac{mR}{r} \left[\left(1 + \frac{r}{m} \right)^n - 1 \right]$

Proposition

(Finding Payments on an Amortized Loan)

Solve Equation
$$P\left(1+\frac{r}{m}\right)^n = \frac{mR}{r}\left[\left(1+\frac{r}{m}\right)^n - 1\right]$$
 for R

where

- $P \equiv$ Amount Borrowed (Principal)
- $R \equiv Payment Amount per Period$
- $r \equiv Annual Interest Rate$
- $m \equiv$ Number of Periodic Payments per Year
- $t \equiv$ Length of Time of Loan (in **years**)
- $n \equiv$ Number of Payments (n = mt)

Finding Present Value of an Annuity via Amortization

Proposition

(Finding the Present Value of an Annuity)

Solve Equation
$$P\left(1+\frac{r}{m}\right)^n = \frac{mR}{r}\left[\left(1+\frac{r}{m}\right)^n - 1\right]$$
 for P

where

- $P \equiv$ Amount Borrowed (Principal)
- $R \equiv Payment Amount per Period$
- $r \equiv Annual Interest Rate$
- $m \equiv$ Number of Periodic Payments per Year
- $t \equiv$ Length of Time of Loan (in **years**)
- $n \equiv$ Number of Payments (n = mt)

Payments on an amortized loan partly pay off the principal & partly pay interest on the outstanding principal.

Over time, each successive payment pays more toward principal & less toward interest.

Definition

An **amortization schedule** is a list showing payment-by-payment how much is going towards the principal & interest.

The key formulas for building an amortization schedule are:

• (*Monthly Interest Rate*) =
$$\frac{1}{12} \times$$
 (*Annual Interest Rate*)
For each month:

- (Interest Paid) = (Last Balance) × (Monthly Interest Rate) × (1 Month)
- (Monthly Payment) (Interest Paid) = (Paid on Principal)
- (New Balance) = (Last Balance) (Paid on Principal)

Amortization Schedule (Example)

\$10,000 Loan at 18% Annual Interest for 4 Years

+					
	PAYMENT	MONTHLY	INTEREST	PAID ON	REMAINING
	NUMBER	PAYMENT	PAID	PRINCIPAL	BALANCE
Initial					\$10,000.00
Month 1	1	\$293.75	\$150.00	\$143.75	\$9856.25
Month 2	2	\$293.75	\$147.84	\$145.91	\$9710.34
Month 3	3	\$293.75	\$145.66	\$148.09	\$9562.25
	:	:	:		:
End Year 1	12	\$293.75	\$124.42	\$169.33	\$8125.33
End Year 2	24	\$293.75	\$91.30	\$202.45	\$5883.93
End Year 3	36	\$293.75	\$51.69	\$242.06	\$3204.08
End Year 4	48	\$293.75	\$4.34	\$289.41	\$0.00

(Interest Paid) = (Last Balance) × (Monthly Interest Rate) × (1 Month) (Monthly Payment) – (Interest Paid) = (Paid on Principal) (New Balance) = (Last Balance) – (Paid on Principal) Suppose you have to borrow money (for a house, say) at a high interest rate. Moreover, you notice a year later that the interest rates decline markedly. So now, you want to pay off the remaining debt on the loan by taking out a second loan at the lower interest rate. This is called **refinancing** the loan.

Definition

Refinancing a loan is the process of taking out a second loan to pay off the first loan, but at a lower interest rate.

Why Refinance??

 Refinancing lowers the size of the monthly payments & reduces the total interest paid.

INTEREST RATE	3 YEARS	10 YEARS	20 YEARS	30 YEARS
4% annual	\$29.53	\$10.12	\$6.06	\$4.77
6% annual	\$30.42	\$11.10	\$7.16	\$6.00
8% annual	\$31.34	\$12.13	\$8.36	\$7.34
10% annual	\$32.27	\$13.22	\$9.65	\$8.78
12% annual	\$33.21	\$14.35	\$11.01	\$10.29

INTEREST RATE	3 YEARS	10 YEARS	20 YEARS	30 YEARS
4% annual	\$29.53	\$10.12	\$6.06	\$4.77
6% annual	\$30.42	\$11.10	\$7.16	\$6.00
8% annual	\$31.34	\$12.13	\$8.36	\$7.34
10% annual	\$32.27	\$13.22	\$9.65	\$8.78
12% annual	\$33.21	\$14.35	\$11.01	\$10.29

Savings when refinancing from 6% to 4% for 3 years:

(3 yrs)(12 months/yr)[(\$30.42/month) - (\$29.53/month)] = \$32.04

INTEREST RATE	3 YEARS	10 YEARS	20 YEARS	30 YEARS
4% annual	\$29.53	\$10.12	\$6.06	\$4.77
6% annual	\$30.42	\$11.10	\$7.16	\$6.00
8% annual	\$31.34	\$12.13	\$8.36	\$7.34
10% annual	\$32.27	\$13.22	\$9.65	\$8.78
12% annual	\$33.21	\$14.35	\$11.01	\$10.29

Savings when refinancing from 12% to 4% for 3 years:

(3 yrs)(12 months/yr)[(\$33.21/month) - (\$29.53/month)] = \$132.48

INTEREST RATE	3 YEARS	10 YEARS	20 YEARS	30 YEARS
4% annual	\$29.53	\$10.12	\$6.06	\$4.77
6% annual	\$30.42	\$11.10	\$7.16	\$6.00
8% annual	\$31.34	\$12.13	\$8.36	\$7.34
10% annual	\$32.27	\$13.22	\$9.65	\$8.78
12% annual	\$33.21	\$14.35	\$11.01	\$10.29

Savings when refinancing from 12% to 4% for **30 years**:

(30 yrs)(12 months/yr)[(\$10.29/month) - (\$4.77/month)] = \$1987.20!!!

So, you end up saving almost double the loan amount!!

Josh Engwer (TTU)

Refinancing a Loan (Why it Matters)

MONTHLY PAYMENTS ON A \$1000.00 LOAN

INTEREST RATE	3 YEARS	10 YEARS	20 YEARS	30 YEARS
4% annual	\$29.53	\$10.12	\$6.06	\$4.77
6% annual	\$30.42	\$11.10	\$7.16	\$6.00
8% annual	\$31.34	\$12.13	\$8.36	\$7.34
10% annual	\$32.27	\$13.22	\$9.65	\$8.78
12% annual	\$33.21	\$14.35	\$11.01	\$10.29

Savings when refinancing from 6% to 4% for 30 years:

 $(30 \text{ yrs})(12 \text{ months/yr}) \left[(\$6.00/\text{month}) - (\$4.77/\text{month}) \right] = \442.80 !!!

So, you end up saving **almost half the loan amount**!! So, reducing the interest rate by a little can result in big savings long-term!

Josh Engwer (TTU)

Fin.