TRIGONOMETRY - PRACTICE EXAM 3 - Chapters 6 - 7

DIRECTIONS/REMARKS:

- Do not write on exam (except your name) - use front and back of scratch paper provided.
- This exam is closed-book, closed-notes, closed-'everything' except a calculator and 4×6 note-card.
- "EXACT" means answer must be in terms of whole \#'s, fractions, and/or radicals - not calculator answers!
- Except for trig. functions of special and quadrantal angles, sufficient work must be shown for any credit!
- Problems 6,7: The opposite side of an upper-case letter angle is the corresponding lower-case letter (i.e. for triangle DEF, side 'd ' is opposite angle D, side 'e' is opposite angle E, \& side ' f ' is opposite angle F)
- Problems 6,7,10: Be sure to use significant figures in the final answers.

PROBLEMS (10 points per entire problem):

1. Using calculator, find (to 4 decimal places) : a) $\arccos (-0.4115) \quad$ b) $\operatorname{arccsc}(7.2865)$
2. Find EXACTLY: a) $\cos (2 \arctan (-2)) \quad$ b) $\tan \left(2 \arcsin \frac{3}{u}\right)$, (where $\left.u>0\right)$
3. Solve each equation for EXACT solutions over $[0,2 \pi)$: a) $\tan \theta+1=\sqrt{3}+\sqrt{3} \cot \theta$ b) $2 \sin \theta=1-2 \cos \theta$
4. Solve each equation for $\underline{\text { ALL EXACT SOLUTIONS: a) }-2 \cos 2 \theta=\sqrt{3} \quad \text { b) } 4 \cos 2 \theta=8 \sin \theta \cos \theta}$
5. Solve each equation for the EXACT solution: a) $\quad \arccos \left(y-\frac{\pi}{3}\right)=\frac{\pi}{6} \quad$ b) $\quad \arcsin x+\arctan x=0$
6. Determine the remaining sides and angles of each triangle XYZ:
a) $\mathrm{Y}=38^{\circ} 40^{\prime}, \mathrm{x}=19.7 \mathrm{~cm}, \mathrm{Z}=91^{\circ} 40^{\prime}$
b) $\mathrm{Z}=88.70^{\circ}, \mathrm{y}=56.87 \mathrm{yd}, \mathrm{z}=112.4 \mathrm{yd}$
7. Determine the remaining sides and angles of each triangle PQR :
a) $\mathrm{R}=28.3^{\circ}, \mathrm{q}=5.71 \mathrm{in}, \mathrm{p}=4.21 \mathrm{in}$
b) $\mathrm{p}=4.00 \mathrm{ft}, \mathrm{q}=5.00 \mathrm{ft}, \mathrm{r}=8.00 \mathrm{ft}$
8. Given vectors $\mathbf{u}=\langle-4,-10\rangle$ and $\mathbf{v}=5 \mathbf{i}-7 \mathbf{j}$, find:
a) $2 \mathbf{u}+3 \mathbf{v}$
b) $\mathbf{u} \cdot(4 \mathbf{v})$
c) $|\mathbf{v}-\mathbf{u}|$
d) the angle between \mathbf{u} and \mathbf{v}
e) are \mathbf{u} and \mathbf{v} orthogonal?
9. a) Given a vector \mathbf{w} with magnitude 20 and direction angle 300°, write \mathbf{w} in the form $\langle a, b\rangle$ (Hint: find its horizontal \& vertical components)
b) Find the magnitude $\&$ direction of vector $\mathbf{m}=\langle-2,3\rangle$
10. a) A 30.0 lb force is required to hold an $80.0-\mathrm{lb}$ rock on an incline.

What is the angle the incline makes with the horizontal?
b) A ship leaves port on a bearing of 110.0°, traveling 8.80 mi .

It then turns and sails 2.40 mi on a bearing of $\mathrm{N} 120.0^{\circ} \mathrm{W}$.
How far is the ship from the port? What is its bearing from port?

BONUS QUESTIONS:

(B1) Normalize vector \mathbf{u} from Problem 8
[Possible bonus questions include properties of inverse trig functions, parallelograms, triangles, and/or vectors]

