Evaluating Some Trig. Values Two Ways: Same Answer, Different Forms

When finding exact values of trig functions of angles, one has to choose the correct identity.
For example, to compute $\cos 22.5^{\circ}$, you have to use the Half-Angle Identity for cosine.
However, for some angles, you have the choice of either using a Sum/Difference Identity or a Half-Angle Identity.
In such a case, finding the answer using two different identities can yield stark differences in the answer in form, but the actual decimal answer will be the same.

Let's compute $\sin 15^{\circ}$ as an example.
Evaluating $\sin 15^{\circ}$ via the Difference Identity:

$$
\sin 15^{\circ}=\sin \left(45^{\circ}-30^{\circ}\right)=\sin 45^{\circ} \cos 30^{\circ}-\cos 45^{\circ} \sin 30^{\circ}=\frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2}-\frac{\sqrt{2}}{2} \times \frac{1}{2}=\frac{\sqrt{6}-\sqrt{2}}{4}
$$

Evaluating $\sin 15^{\circ}$ via the Half-Angle Identity:

$$
\sin 15^{\circ}=\sin \left(\frac{1}{2} \times 30^{\circ}\right)= \pm \sqrt{\frac{1-\cos 30^{\circ}}{2}}=\frac{\sqrt{2-\sqrt{3}}}{2}
$$

Notice, that the forms of the two answers are markedly distinct!
But, does $\frac{\sqrt{2-\sqrt{3}}}{2}=\frac{\sqrt{6}-\sqrt{2}}{4}$??
Well, one way is to find the decimal approximations to each expression:

$$
\frac{\sqrt{2-\sqrt{3}}}{2} \approx 0.25882 \text { and } \frac{\sqrt{6}-\sqrt{2}}{4} \approx 0.25882
$$

Another way is to verify their equality algebraically:

$$
\begin{gathered}
\frac{2-\sqrt{3}}{2}=\frac{\sqrt{6}-\sqrt{2}}{4} \Rightarrow 2 \sqrt{2-\sqrt{3}}=\sqrt{6}-\sqrt{2} \\
\Rightarrow 4(2-\sqrt{3})=6-2 \sqrt{12}+2 \Rightarrow 8-4 \sqrt{3}=8-2 \sqrt{12} \\
\Rightarrow 4-2 \sqrt{3}=4-\sqrt{12} \\
\Rightarrow 4-2 \sqrt{3}=4-2 \sqrt{3} \\
\Rightarrow 0=0
\end{gathered}
$$

Since the equation ' $0=0$ ' is a true statement, that implies these two different forms do indeed have the same value.

