Quick Method of graphing secant or cosecant functions, regardless of complexity

The trick that the textbook [1] uses (plotting the respective sine/cosine graph first) has a few downsides:

- It works best only when the function is very 'simple' (e.g. $y=3 \sec (x)$)
- It requires graphing a second function, which takes more time and clutters the graph
- It requires knowledge of amplitude, horizontal stretch, phase shift, vertical shift, and mirror image.
- If the sine/cosine function is graphed wrong, then the secant/cosecant graph will be wrong automatically!

In fact, the textbook [1] does not even have an example of graphing a very complicated secant/cosecant function!
The method presented here mirrors that used in Section 4.2 (known as 'Method 1' in that section). In fact, 'Method 1' is used exclusively for more complicated sine/cosine graphs versus using shifts \& stretches (see Example 5, page 162). The main difference here is that we must consider where the vertical asymptotes occur.

This method is also used in Section 4.3 (graphing tangent/cotangent functions) - see Example 5, page 173. The main difference is the first part of STEP 1: the argument of tangent is set between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$, and the argument of cotangent is set between 0 and π.

These differences are needed to ensure that an entire period of tangent/cotangent is plotted as well as ensure that a pair of vertical asymptotes are included.

Note, that the examples presented below are in the most complicated form that secant/cosecant can be:

$$
y=c+a \sec (b x-d) \quad \text { or } \quad y=c+a \csc (b x-d)
$$

but the method used here works for simpler secant/cosecant functions (i.e. $c=0, d=0, a=1$, and/or $b=1$)

The last page has some harder problems to try to help reinforce the technique.

Example (E1): Sketch $y=-\frac{1}{2}-\frac{1}{4} \sec (4 x-\pi)$

STEP 1: Find the 'key values' of x.
Set the argument of $\sec (4 x-\pi)$ between 0 and 2π :

$$
0 \leqslant 4 x-\pi \leqslant 2 \pi \Rightarrow \pi \leqslant 4 x \leqslant 3 \pi \Rightarrow \frac{\pi}{4} \leqslant x \leqslant \frac{3 \pi}{4} \Rightarrow x \in\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right]
$$

Partition the interval into 4 pieces. In other words, divide the length of the interval by 4 :
Length of interval $\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right] \div 4=\left(\frac{3 \pi}{4}-\frac{\pi}{4}\right) \div 4=\frac{\pi}{2} \div 4=\frac{\pi}{2}\left(\frac{1}{4}\right)=\frac{\pi}{8}$
Now, start with the lower end of the interval (which is $\frac{\pi}{4}$), and add $\frac{\pi}{8}$ to it repetitively until the upper end of the interval is reached $\left(\frac{3 \pi}{4}\right)$. There should be only five values total!
The key values of x are: $\frac{\pi}{4}, \frac{3 \pi}{8}, \frac{\pi}{2}, \frac{5 \pi}{8}, \frac{3 \pi}{4}$
STEP 2: Build a table with the key values of x and evaluate the function at each key value:

x	$y=-\frac{1}{2}-\frac{1}{4} \sec (4 x-\pi)$
$\frac{\pi}{4}$	$-\frac{1}{2}-\frac{1}{4} \sec (\mathbf{0})=-\frac{3}{4}$
$\frac{3 \pi}{8}$	$-\frac{1}{2}-\frac{1}{4} \sec \left(\frac{\pi}{2}\right)=$ UNDEFINED
$\frac{\pi}{2}$	$-\frac{1}{2}-\frac{1}{4} \sec (\boldsymbol{\pi})=-\frac{1}{4}$
$\frac{5 \pi}{8}$	$-\frac{1}{2}-\frac{1}{4} \sec \left(\frac{\mathbf{3 \pi}}{\mathbf{2}}\right)=$ UNDEFINED
$\frac{3 \pi}{4}$	$-\frac{1}{2}-\frac{1}{4} \sec (2 \pi)=-\frac{3}{4}$

* Notice that the arguments of secant reduce to quadrantal angles (in bold above) -- that's no accident!

STEP 3: Plot the asymptotes from table (where y is $\boldsymbol{U N D E F I N E D}$) with dashed vertical lines at: $x=\frac{3 \pi}{8}, x=\frac{5 \pi}{8}$
STEP 4: Plot the remaining points from table: $\left(\frac{\pi}{4},-\frac{3}{4}\right),\left(\frac{\pi}{2},-\frac{1}{4}\right),\left(\frac{3 \pi}{4},-\frac{3}{4}\right)$
STEP 5: Draw an 'upward parabola' at each point in STEP 4 with a larger \boldsymbol{y}-value: $\left(\frac{\pi}{2},-\frac{1}{4}\right)$
Draw a 'downward parabola' at each point in STEP 4 with a smaller y-value: $\left(\frac{\pi}{4},-\frac{3}{4}\right),\left(\frac{3 \pi}{4},-\frac{3}{4}\right)$
STEP 6: At this point of the sketch, one entire period of the function has been graphed, therefore one can quickly extend/replicate the graph at other intervals of x as needed, using what has already been sketched.

NOTE: Make sure each point in STEP 4 is halfway between (horizontally) the two asymptotes surrounding it!

FINAL STEPS: Label axes and make sure key points in STEP 4 are either explicitly labeled or inferred from axes.
Example (E2): Sketch $y=5+3 \csc \left(\frac{1}{2} x+\frac{\pi}{2}\right)$
STEP 1: Find the 'key values' of x.
Set the argument of $\csc \left(\frac{1}{2} x+\frac{\pi}{2}\right)$ between 0 and 2π :

$$
0 \leqslant \frac{1}{2} x+\frac{\pi}{2} \leqslant 2 \pi \Rightarrow-\frac{\pi}{2} \leqslant \frac{1}{2} x \leqslant \frac{3 \pi}{2} \Rightarrow-\pi \leqslant x \leqslant 3 \pi \Rightarrow x \in[-\pi, 3 \pi]
$$

Partition the interval into 4 pieces. In other words, divide the length of the interval by 4 :
Length of interval $[-\pi, 3 \pi] \div 4=(3 \pi-(-\pi)) \div 4=4 \pi \div 4=\pi$
Now, start with the lower end of the interval (which is $-\pi$), and add π to it repetitively until the upper end of the interval is reached (3π). There should be only five values total!

The key values of x are: $\quad-\pi, 0, \pi, 2 \pi, 3 \pi$
STEP 2: Build a table with the key values of x and evaluate the function at each key value:

x	$y=5+3 \csc \left(\frac{1}{2} x+\frac{\pi}{2}\right)$
$-\pi$	$5+3 \csc (\mathbf{0})=$ UNDEFINED
0	$5+3 \csc \left(\frac{\boldsymbol{\pi}}{\mathbf{2}}\right)=8$
π	$5+3 \csc (\boldsymbol{\pi})=$ UNDEFINED
2π	$5+3 \csc \left(\frac{\mathbf{3} \boldsymbol{\pi}}{\mathbf{2}}\right)=2$
3π	$5+3 \csc (\mathbf{2} \boldsymbol{\pi})=$ UNDEFINED

* Notice that the arguments of cosecant reduce to quadrantal angles (in bold above) -- that's no accident!

STEP 3: Plot the asymptotes from table (where y is UNDEFINED) with dashed vertical lines at:
$x=-\pi, x=\pi, x=3 \pi$
STEP 4: Plot the remaining points from table: $(0,8),(2 \pi, 2)$
STEP 5: Draw an 'upward parabola' at each point in STEP 4 with a larger \boldsymbol{y}-value: $(0,8)$
Draw a 'downward parabola' at each point in STEP 4 with a smaller \boldsymbol{y}-value: $(2 \pi, 2)$
STEP 6: At this point of the sketch, one entire period of the function has been graphed, therefore one can quickly extend/replicate the graph at other intervals of x as needed, using what has already been sketched.

NOTE: Make sure each point in STEP 4 is halfway between (horizontally) the two asymptotes surrounding it! FINAL STEPS: Label axes and make sure key points in STEP 4 are either explicitly labeled or inferred from axes.

Practice Problems: For each problem, sketch the graph over a two-period interval.

(P1) $y=2-7 \sec \left(x-\frac{\pi}{5}\right)$
(P2) $\quad w=-\frac{5}{6}+\frac{2}{3} \csc (11 t+\pi)$

$$
\begin{equation*}
y=\sqrt{13}-\sqrt{13} \csc \left(2 x-\frac{2 \pi}{3}\right) \tag{P3}
\end{equation*}
$$

(P4) $\quad z=\frac{2}{\pi^{3}}-\frac{5}{\pi^{3}} \sec (\pi x-\pi)$

NOTE: Problems like $(\mathrm{P} 3) \&(\mathrm{P} 4)$ are not in the textbook [1], therefore such problems will not be on an exam. Problem (P2) is complex enough algebraically that a similar problem may be a possible bonus question on an exam.

References

[1] M. L. Lial, J. E. Hornsby, D. Schneider. Trigonometry. Pearson, Boston, MA, 9th Edition, 2009.

