## How to painlessly solve SSA triangles

Here's a concise summary of the process that the textbook [1] lays out to solving the ambiguous SSA layout:

1. Use Law of Sines to find the unknown angle opposite the known side.

Here's a useful mnemonic device: MADES = ' Mystery Angle Displaced from Established Side'
If upon using the $\left[\sin ^{-1}\right]$ calculator button you get a DOMAIN ERROR then NO TRIANGLE EXISTS -- DONE!
Else, solve the triangle: Use Law of Sines to find the unknown side \& the Angle Sum of Triangles to find last angle.
2. Now, find the supplement of the unknown angle opposite the known side.

If MADES + (the given angle) $\geq 180^{\circ}$, then NO 2ND TRIANGLE EXISTS -- DONE!
Else, solve 2nd triangle: Use Law of Sines to find the unknown side \& the Angle Sum of Triangles to find last angle.

Triangle Labeling Convention used by the textbook [1]:


Angle Sum of Triangles: $A+B+C=180^{\circ}$
Law of Sines: $\quad \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$

STEP 0: MAKE SURE CALCULATOR IS SET TO DEGREE MODE!
STEP 1: Sketch triangle ABC (not to scale) and determine layout
Upon sketching triangle ABC and labeling what is given using the standard convention in the textbook [1], one realizes that this is an SSA case, implying that the Law of Sines must be invoked.


## PART I: Solve 1st triangle (if it exists)

STEP 2: Find the unknown angle opposite a known side, in this case angle A:
[Mnemonic Device : MADES = 'Mystery Angle Displaced from Established Side']

$$
\frac{\sin \mathrm{A}}{a}=\frac{\sin \mathrm{B}}{b} \Rightarrow \frac{\sin \mathrm{~A}}{17.5 \mathrm{~cm}}=\frac{\sin 56.7^{\circ}}{14.2 \mathrm{~cm}} \Rightarrow \sin \mathrm{~A}=1.030044283 \Rightarrow \text { DOMAIN ERROR }
$$

Since 1.030044283 falls outside the range of sine $[-1,1]$, angle $A$ is undefined.
Therefore, NO TRIANGLE EXISTS -- DONE!
Drawing the triangle carefully to scale reveals why triangle ABC does not really exist:


Example (E6): Solve triangle DEF with $\mathrm{F}=71.3^{\circ}, d=20.4 \mathrm{~mm}, f=19.6 \mathrm{~mm}$

## STEP 0: MAKE SURE CALCULATOR IS SET TO DEGREE MODE!

STEP 1: Sketch triangle DEF (not to scale) and determine layout
Upon sketching triangle DEF and labeling what is given using the standard convention in the textbook [1], one realizes that this is an SSA case, implying that the Law of Sines must be invoked.


## PART I: Solve 1st triangle (if it exists)

STEP 2: Find the unknown angle opposite a known side, in this case angle D:
[Mnemonic Device : MADES = 'Mystery Angle Displaced from Established Side']

$$
\frac{\sin \mathrm{D}}{d}=\frac{\sin \mathrm{F}}{f} \Rightarrow \frac{\sin \mathrm{D}}{20.4 \mathrm{~mm}}=\frac{\sin 71.3^{\circ}}{19.6 \mathrm{~mm}} \Rightarrow \sin \mathrm{D}=0.9858719217 \Rightarrow \mathrm{D}=80.35745181^{\circ} \Rightarrow \mathbf{D}=\mathbf{8 0 . 4}{ }^{\circ}
$$

STEP 3: Using the Angle Sum of Triangles, find the last angle (in this case angle E):

$$
\mathrm{D}+\mathrm{E}+\mathrm{F}=180^{\circ} \Rightarrow 80.4^{\circ}+\mathrm{E}+71.3^{\circ}=180^{\circ} \Rightarrow \mathbf{E}=\mathbf{2 8 . 3 ^ { \circ }}
$$

STEP 4: Find the unknown side (in this case, side $e$ ):

$$
\frac{\sin \mathrm{F}}{f}=\frac{\sin \mathrm{E}}{e} \Rightarrow \frac{\sin 71.3^{\circ}}{19.6 \mathrm{~mm}}=\frac{\sin 28.3^{\circ}}{e} \Rightarrow e=9.809995854 \mathrm{~mm} \Rightarrow \boldsymbol{e}=\mathbf{9 . 8 1} \mathrm{mm}
$$

## PART II: Solve 2nd triangle (if it exists)

STEP 5: Find the supplement of MADES, i.e. supplement $=180^{\circ}-\mathrm{D}=180^{\circ}-80.35745181^{\circ}=99.64254819^{\circ}$
Let MADES be this new value, i.e. $\mathrm{D}=99.64254819^{\circ} \Rightarrow \mathbf{D}=99.6^{\circ}$
STEP 6: Is MADES $+($ given angle $) \geq 180^{\circ} ? \mathrm{D}+\mathrm{F}=99.6^{\circ}+71.3^{\circ}=170.9^{\circ}<180^{\circ} \Rightarrow$ The answer is NO Since the answer is NO, a second triangle exists.

STEP 7: Using the Angle Sum of Triangles, find the last angle (in this case angle E):

$$
\mathrm{D}+\mathrm{E}+\mathrm{F}=180^{\circ} \Rightarrow 99.6^{\circ}+\mathrm{E}+71.3^{\circ}=180^{\circ} \Rightarrow \mathbf{E}=\mathbf{9 . 1 0}^{\circ}
$$

STEP 8: Find the unknown side (in this case, side $e$ ):

$$
\frac{\sin \mathrm{F}}{f}=\frac{\sin \mathrm{E}}{e} \Rightarrow \frac{\sin 71.3^{\circ}}{19.6 \mathrm{~mm}}=\frac{\sin 9.10^{\circ}}{e} \Rightarrow e=3.272660982 \mathrm{~mm} \Rightarrow \boldsymbol{e}=\mathbf{3 . 2 7} \mathrm{mm}
$$

Example (E7): Solve triangle JKL with $\mathrm{K}=71.3^{\circ}, k=7.23 \mathrm{~km}, l=5.87 \mathrm{~km}$

## STEP 0: MAKE SURE CALCULATOR IS SET TO DEGREE MODE!

STEP 1: Sketch triangle JKL (not to scale) and determine layout
Upon sketching triangle JKL and labeling what is given using the standard convention in the textbook [1], one realizes that this is an SSA case, implying that the Law of Sines must be invoked.


## PART I: Solve 1st triangle (if it exists)

STEP 2: Find the unknown angle opposite a known side, in this case angle L:
[Mnemonic Device : MADES = 'Mystery Angle Displaced from Established Side']

$$
\frac{\sin \mathrm{L}}{l}=\frac{\sin \mathrm{K}}{k} \Rightarrow \frac{\sin \mathrm{~L}}{5.87 \mathrm{~km}}=\frac{\sin 51.8^{\circ}}{7.23 \mathrm{~km}} \Rightarrow \sin \mathrm{~L}=0.6380331899 \Rightarrow \mathrm{~L}=39.64531528^{\circ} \Rightarrow \mathbf{L}=\mathbf{3 9 . 6}^{\circ}
$$

STEP 3: Using the Angle Sum of Triangles, find the last angle (in this case angle J):

$$
\mathrm{J}+\mathrm{K}+\mathrm{L}=180^{\circ} \Rightarrow \mathrm{J}+51.8^{\circ}+39.6^{\circ}=180^{\circ} \Rightarrow \mathbf{J}=\mathbf{8 8 . 6}^{\circ}
$$

STEP 4: Find the unknown side (in this case, side $e$ ):

$$
\frac{\sin \mathrm{J}}{j}=\frac{\sin \mathrm{K}}{k} \Rightarrow \frac{\sin 88.6^{\circ}}{j}=\frac{\sin 51.8^{\circ}}{7.23 \mathrm{~km}} \Rightarrow j=9.197402013 \mathrm{~km} \Rightarrow \boldsymbol{j}=\mathbf{9 . 2 0} \mathbf{~ k m}
$$

## PART II: Solve 2nd triangle (if it exists)

STEP 5: Find the supplement of MADES, i.e. supplement $=180^{\circ}-\mathrm{L}=180^{\circ}-39.64531528^{\circ}=140.3546847^{\circ}$ Let MADES be this new value, i.e. $\mathrm{L}=140.3546847^{\circ} \Rightarrow \mathbf{L}=\mathbf{1 4 0}^{\circ}$

STEP 6: Is MADES + (given angle) $\geq 180^{\circ} ? \mathrm{~K}+\mathrm{L}=51.8^{\circ}+140^{\circ}=191.8^{\circ}>180^{\circ} \Rightarrow$ The answer is YES Since the answer is YES, second triangle DOES NOT EXIST -- DONE!

## References

[1] M. L. Lial, J. E. Hornsby, D. Schneider. Trigonometry. Pearson, Boston, MA, 9th Edition, 2009.

