Derivation of the Sum-to-Product Identities

The textbook [1] neglects to derive the Sum-to-Product Identities.
The derivation of the Sum-to-Product Identities follows from the derivation of the Product-to-Sum Identities (pg 237) by means of an appropriate variable substitution.

Product-to-Sum Identities

$\cos A \cos B=\frac{1}{2}[\cos (A+B)+\cos (A-B)]$
$\sin A \sin B=\frac{1}{2}[\cos (A-B)-\cos (A+B)]$
$\sin A \cos B=\frac{1}{2}[\sin (A+B)+\sin (A-B)]$
$\cos A \sin B=\frac{1}{2}[\sin (A+B)-\sin (A-B)]$

Now, perform a change of variables:

$$
\begin{aligned}
& M=A+B \\
& N=A-B
\end{aligned}
$$

Solve for A by adding the two equations: $\quad M+N=2 A \Rightarrow A=\left(\frac{M+N}{2}\right)$
Solve for B by subtracting the two equations: $\quad M-N=2 B \Rightarrow B=\left(\frac{M-N}{2}\right)$
Finally, plug in these expressions for A and B into the first Product-to-Sum Identity, and multiply both sides of each identity by 2 :

$$
\begin{gathered}
\cos A \cos B=\frac{1}{2}[\cos (A+B)+\cos (A-B)] \\
\Rightarrow \cos \left(\frac{M+N}{2}\right) \cos \left(\frac{M-N}{2}\right)=\frac{1}{2}[\cos M+\cos N] \\
\Rightarrow \cos M+\cos N=2 \cos \left(\frac{M+N}{2}\right) \cos \left(\frac{M-N}{2}\right)
\end{gathered}
$$

Repeating this process for the other 3 identities will yield the remaining Sum-to-Product identities (pg 238):

$$
\begin{array}{|l}
\hline \sin M+\sin N=2 \sin \left(\frac{M+N}{2}\right) \cos \left(\frac{M-N}{2}\right) \\
\hline \sin M-\sin N=2 \cos \left(\frac{M+N}{2}\right) \sin \left(\frac{M-N}{2}\right) \\
\hline \cos M+\cos N=2 \cos \left(\frac{M+N}{2}\right) \cos \left(\frac{M-N}{2}\right) \\
\hline \cos M-\cos N=-2 \sin \left(\frac{M+N}{2}\right) \sin \left(\frac{M-N}{2}\right) \\
\hline
\end{array}
$$

References

[1] M. L. Lial, J. E. Hornsby, D. Schneider. Trigonometry. Pearson, Boston, MA, 9th Edition, 2009.

