Vector Normalization

The textbook [1] does not discuss vector normalization.
The need to normalize a vector arises in physics, computer graphics [3], calculus [2], and higher mathematics as some processes are concerned more with a vector's direction than its magnitude.

For the purposes of a plane trigonometry course, only 2-D vectors will be considered. Multivariable calculus [2] looks at 3-D vectors. Linear algebra [4] and higher math courses will investigate vectors of even higher dimensions!

To normalize a vector means to scale it such that its magnitude is one and its direction remains the same.
Given vector $\mathbf{a}=\left\langle\mathrm{a}_{1}, \mathrm{a}_{2}\right\rangle=\mathrm{a}_{1} \hat{\mathbf{i}}+\mathrm{a}_{2} \hat{\mathbf{j}} \quad($ where $\hat{\mathbf{i}}=\langle 1,0\rangle, \hat{\mathbf{j}}=\langle 0,1\rangle)$
the normalization of vector \mathbf{a} is $\quad \hat{\mathbf{a}}=\frac{\mathbf{a}}{|\mathbf{a}|}=\frac{\left\langle\mathrm{a}_{1}, \mathrm{a}_{2}\right\rangle}{\sqrt{\mathrm{a}_{1}^{2}+\mathrm{a}_{2}^{2}}} \equiv\left\langle\hat{\mathrm{a}_{1}}, \hat{\mathrm{a}_{2}}\right\rangle$
Note that a variable with a 'hat' like $\hat{\mathbf{a}}$ denotes a unit vector (with magnitude 1).
One nice property of unit (normalized) vectors is $\hat{\mathbf{a}} \cdot \hat{\mathbf{a}}=\hat{\mathbf{a}_{1} \hat{a}_{1}}+\hat{\mathbf{a}_{2}} \hat{\hat{a}_{2}}=\left(\hat{a_{1}}\right)^{2}+\left(\hat{a_{2}}\right)^{2}=|\hat{\mathbf{a}}|^{2}=(1)^{2}=1$

Example (E11): Given vector $\mathbf{u}=\langle-4,5\rangle$ normalize it -- that is, find $\hat{\mathbf{u}}$

$$
\hat{\mathbf{u}}=\frac{\mathbf{u}}{|\mathbf{u}|}=\frac{1}{\sqrt{(-4)^{2}+5^{2}}}\langle-4,5\rangle=\frac{1}{\sqrt{41}}\langle-4,5\rangle=\left\langle-\frac{4}{\sqrt{41}}, \frac{5}{\sqrt{41}}\right\rangle \approx\langle 0.0976,0.1220\rangle
$$

REMARK: Contrary to intuition, it's better to leave square roots (if they occur) in the denominator.
One can check this solution using the property of unit vectors:

$$
\hat{\mathbf{u}} \cdot \hat{\mathbf{u}}=\hat{\mathrm{u}}_{1} \hat{\mathrm{u}}_{1}+\hat{\mathrm{u}}_{2} \hat{\mathrm{u}}_{2}=\left(\hat{\mathrm{u}}_{1}\right)^{2}+\left(\hat{\mathrm{u}}_{2}\right)^{2}=\left(-\frac{4}{\sqrt{41}}\right)^{2}+\left(\frac{5}{\sqrt{41}}\right)^{2}=\frac{16}{41}+\frac{25}{41}=\frac{16+25}{41}=\frac{41}{41}=1
$$

References

[1] M. L. Lial, J. E. Hornsby, D. Schneider. Trigonometry. Pearson, Boston, MA, 9th Edition, 2009.
[2] J. Stewart. Multivariable Calculus. Brooks/Cole Publishing, Pacific Grove, CA, 2nd Edition, 1991.
[3] E. Angel, D. Schreiner. Interactive Computer Graphics: A Top-Down Approach with Shader-Based OpenGL. Addison Wesley, Upper Saddle River, NJ, 6th Edition, 2011.
[4] G. Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press, Wellesley, MA, 3rd Edition, 2003.

