PRACTICE EXAM 1 - SOLUTIONS (Sections 9.1-9.8)

* For most problems, only the answer and maybe a hint is given - you have to fill in the details!
* Exceptions to the above : Problems 2(c)(d)(e)(f), 3(a)(b), 6(b), 7(b), 8(b), 9(a), 10(b)

1. a) $\lim _{x \rightarrow-1} \frac{10 x^{4}-10}{x^{8}-1}=5$ (Substitution of $x=-1$ yields $\frac{0}{0}$, which signals to simplify expression)
b) $\lim _{x \rightarrow \infty} \frac{5 x^{4}+x^{2}-3 x+2}{3 x^{4}+2 x^{3}-x-1}=\boxed{\frac{5}{3}}$ (Divide top \& bottom of fraction by x^{4}, then take limits)
2. a) $\lim _{t \rightarrow 2^{-}} s(t)=-7$
b) $\lim _{t \rightarrow 2^{+}} s(t)=-7$
c) $\lim _{t \rightarrow 2} s(t)=-7 \quad\left(\right.$ since $\left.\lim _{t \rightarrow 2^{-}} s(t)=\lim _{t \rightarrow 2^{+}} s(t)=-7\right)$
d) $s(t)$ is continuous at $t=2$ since $s(2)$ exists, $\lim _{t \rightarrow 2} s(t)$ exists, and $\lim _{t \rightarrow 2} s(t)=s(2)$
e) $s(t)$ is continuous at $t=5$ since $t=5$ is inside the interval [2,9), not on the boundary, and the piece for that interval is $t^{2}-11$, which is a polynomial and polynomials are continuous everywhere
f) $s(t)$ is NOT continuous at $t=9$ since $\lim _{t \rightarrow 9^{-}} s(t)=70 \neq 15=\lim _{t \rightarrow 9^{+}} s(t) \Rightarrow \lim _{t \rightarrow 9} s(t)$ DNE
3. a) Using the definition of the derivative of $f(x)=2 x-5$:

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{[2(x+h)-5]-[2 x-5]}{h}=\lim _{h \rightarrow 0} \frac{2 x+2 h-5-2 x+5}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h}{h}=\lim _{h \rightarrow 0} 2=2
\end{aligned}
$$

b) Using the definition of the derivative of $g(x)=4 x^{2}+x$:

$$
\begin{aligned}
& g^{\prime}(x)=\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}=\lim _{h \rightarrow 0} \frac{\left[4(x+h)^{2}+(x+h)\right]-\left[4 x^{2}+x\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[\left(4 x^{2}+8 h x+4 h^{2}\right)+(x+h)\right]-\left[4 x^{2}+x\right]}{h}=\lim _{h \rightarrow 0} \frac{h[(8 x+1)+h]}{h}=\lim _{h \rightarrow 0}[(8 x+1)+h] \\
& =(8 x+1)+0=8 x+1
\end{aligned}
$$

4. a) $h^{\prime}(-1)=-\frac{2107}{5} \quad$ b) $y^{\prime}=4000 x^{999}+30 x^{2}-4 x+50 x^{-1 / 2}$
5. a) Slope of tangent line to $f(x)$ at point $(1,0)=f^{\prime}(1)=-5$
b) Slope of tangent line is $m=g^{\prime}(-1)=-\frac{13}{9}$, point $\left(x_{0}, y_{0}\right)=(-1, g(-1))=\left(-1,-\frac{2}{3}\right)$. Thus, equation of line is $y=-\frac{13}{9} x-\frac{19}{9}$
6. a) $\frac{d^{2} w}{d t^{2}}=180(2 t-1)^{8}$
b) Using Chain Rule (Leibniz form), $\frac{d v}{d x}=\frac{d v}{d u} \frac{d u}{d x}=\left(12 u^{3}\right)(2)=24 u^{3}=24(2 x+1)^{3}$ (Remember, $\frac{d v}{d x}$ means the derivative of v must be written in terms of x, not u.)
7. a) $f^{\prime}(x)=20 e^{-4 x} \quad$ b) f is increasing at $x=0$ because $f^{\prime}(0)=20 e^{-4(0)}=20(1)=20>0$
8. a) $g^{\prime}(z)=6 z^{5} \ln z+z^{5} \quad$ b) g is NOT differentiable at $z=0$ because $g^{\prime}(0)$ DNE
9. a) Revenue function $R(x)=x p=x(-0.02 x+800) \Rightarrow R(x)=-0.02 x^{2}+800 x$
b) Marginal revenue function $R^{\prime}(x)=-0.04 x+800$
10. a) Marginal cost when $x=1000=C^{\prime}(1000)=\$ 2.20$ /week
b) Average cost function $\bar{C}(x)=\frac{C(x)}{x} \Rightarrow \bar{C}(x)=2.2+\frac{2500}{x}$

BONUS QUESTIONS:

Example 1:
a) $\frac{d^{2} v}{d x^{2}}=144(2 x+1)^{2}$
b) $\frac{d^{3} v}{d x^{3}}=576(2 x+1)$
c) $\frac{d^{(20)} v}{d x^{(20)}}=? ? ?$ (come by my office hours and tell me what your answer is)

Example 2:
a) $f^{\prime \prime}(x)=-80 e^{-4 x}$
b) $f^{\prime \prime \prime}(x)=320 e^{-4 x}$
c) $f^{(4)}(x)=-1280 e^{-4 x}$
d) $f^{(n)}(x)=? ? ?$ (come by my office hours and tell me what your answer is)

