* For most problems, only the answer and maybe a hint is given - you have to fill in the details!
* Exception to the above : Problem 1 is solved merely by visual inspection of the given graph

1. a) h increases over interval $(a, b) \cup(d, e) \cup(p, r) \quad$ b) h decreases over $(b, d) \cup(e, p) \cup(r, s)$
c) Relative minima : $x \in\{d, p\} \quad$ Relative maxima : $x \in\{b, e, r\}$
d) h is concave up over $(c, e) \cup(e, q)$
e) h is concave down over $(a, c) \cup(q, s)$
f) Inflection points : $x \in\{c, q\}$
g) Absolute minimum occurs at $x=s$
h) Absolute maximum occurs at $x=e$
2. a) Acceptable answers: $(-\infty, 0) \cup(0, \infty)$ or $(-\infty, \infty)$ or \mathbb{R} or "All real numbers"
b) Acceptable answers: \emptyset or "Nowhere" or "No real numbers"
c) None
d) $(-\infty, 0)$
e) $(0, \infty)$
f) $x=0$
3. a) Acceptable answers: $(-\infty, 1) \cup(1, \infty)$ or $\mathbb{R} \backslash\{1\}$ or "All real numbers except 1 "
b) Acceptable answers: \emptyset or "Nowhere" or "No real numbers" c) None
d) $(1, \infty)$ e) $(-\infty, 1)$ f) Acceptable answers: $x=1$ or the point $(1,3)$
g) Absolute minimum occurs at $x=-3$ with absolute minimum value of $g(-3)=-125$

Absolute maximum occurs at $x=3$ with absolute maximum value of $g(3)=19$
4. a) $P^{\prime}(x)=-2 x+8 \quad$ b) The monthly advertising budget should be 4000 dollars per month.
5. Length $=12.5 \mathrm{ft}$ and Width $=10 \mathrm{ft}$, which implies the maximum area of the garden is $125 \mathrm{ft}^{2}$.
6. $\mathrm{L}=6.846 \mathrm{ft}$ and $\mathrm{W}=8.680 \mathrm{ft}$, which implies the least amount of fencing used is 58.433 ft [all values rounded to 3 decimal places]
7. $y=0.9303 x+0.4549$ with $R^{2}=0.5617$

BONUS QUESTIONS:

(B1) $y=-0.3483 x^{3}+2.3977 x^{2}-3.7119 x+2.6141$ with $R^{2}=0.6370$
(B2) $y=0.7714\left(1.5468^{x}\right)$ with $R^{2}=0.4614$
(B3) Cubic model is the best-fit because its R^{2}-value is the closest to 1 .
(B4) ??? (come by my office hours and tell me what your answer is)

