TTU - MATH1331 (Business Calculus) - JOSH ENGWER - 10/22/2011 PRACTICE EXAM 2 - SOLUTIONS (Sections 10.1,10.2,10.4,10.5 & Regression)

* For most problems, only the answer and maybe a hint is given – you have to fill in the details!

* Exception to the above : Problem 1 is solved merely by visual inspection of the given graph

- 1. a) h increases over interval $(a,b) \cup (d,e) \cup (p,r)$ b) h decreases over $(b,d) \cup (e,p) \cup (r,s)$
 - c) Relative minima : $x \in \{d, p\}$ Relative maxima : $x \in \{b, e, r\}$
 - d) h is concave up over $(c, e) \cup (e, q)$ e) h is concave down over $(a, c) \cup (q, s)$
 - f) Inflection points : $x \in \{c, q\}$
 - g) Absolute minimum occurs at x = s h) Absolute maximum occurs at x = e
- 2. a) Acceptable answers: $(-\infty, 0) \cup (0, \infty)$ or $(-\infty, \infty)$ or \mathbb{R} or "All real numbers"
 - b) Acceptable answers: \emptyset or "Nowhere" or "No real numbers" c) None
 - d) $(-\infty, 0)$ e) $(0, \infty)$ f) x = 0
- 3. a) Acceptable answers: $(-\infty, 1) \cup (1, \infty)$ or $\mathbb{R} \setminus \{1\}$ or "All real numbers except 1"
 - b) Acceptable answers: \emptyset or "Nowhere" or "No real numbers" c) None
 - d) $(1,\infty)$ e) $(-\infty,1)$ f) Acceptable answers: x = 1 or the point (1,3)
 - g) Absolute minimum occurs at x = -3 with absolute minimum value of g(-3) = -125Absolute maximum occurs at x = -3 with absolute maximum value of g(3) = 19
- 4. a) P'(x) = -2x + 8 b) The monthly advertising budget should be 4000 dollars per month.
- 5. Length = 12.5 ft and Width = 10 ft, which implies the maximum area of the garden is 125 ft².
- 6. L = 6.846 ft and W = 8.680 ft, which implies the least amount of fencing used is 58.433 ft [all values rounded to 3 decimal places]
- 7. y = 0.9303x + 0.4549 with $R^2 = 0.5617$

BONUS QUESTIONS:

- (B1) $y = -0.3483x^3 + 2.3977x^2 3.7119x + 2.6141$ with $R^2 = 0.6370$
- (B2) $y = 0.7714(1.5468^x)$ with $R^2 = 0.4614$
- (B3) Cubic model is the best-fit because its R^2 -value is the closest to 1.
- (B4) ??? (come by my office hours and tell me what your answer is)