TTU - MATH1331 (Business Calculus) - JOSH ENGWER - 11/17/2011

PRACTICE EXAM 3 - SOLUTIONS (Chapter 11 except 11.3)

* For some problems, only the answer and maybe a hint is given - you have to fill in the details!
* Exceptions to the above : Problems 4(a), 4(b), 5, 6, 7, 8, 9

1. a) $\frac{1}{5} x^{5}-\frac{3}{5} x^{10 / 3}-4 x^{-1}-\frac{2}{3} x^{3 / 2}+C \quad$ or $\quad \frac{1}{5} x^{5}-\frac{3}{5} \sqrt[3]{x^{10}}-\frac{4}{x}-\frac{2}{3} \sqrt{x^{3}}+C$
b) $\frac{1}{6}(\ln z)^{6}+C$
c) $\frac{1}{3} w^{3}-\frac{1}{6} w^{6}+w-\frac{1}{4} w^{4}+C$
2. a) $\frac{3}{2}(\ln 8-\ln 5)=\frac{3}{2} \ln \left(\frac{8}{5}\right) \approx 0.705005$
b) $e^{4}+3\left(4^{1 / 3}\right)+\frac{2}{7}\left(4^{-7 / 2}\right)-e-\frac{23}{7} \approx 53.35859$
c) $\frac{8}{15}+\frac{4}{15} \sqrt{2}-6 \sqrt{6} \approx-13.78648$
3. Average value $=\frac{1}{3-0} \int_{0}^{3} \frac{x}{\sqrt{x^{2}+16}} d x=\frac{1}{3} \approx 0.33333$
4. a) Since the solution to equation $f(x)=0 \Longleftrightarrow 3 x^{2}+2 x+1=0$ has complex (undefined) solutions, and $f(0)=1>0$, the curve $f(x)$ lies totally above the x-axis.
Hence, the usual definite integral will yield the correct area:
Area $=\int_{-1}^{2}\left(3 x^{2}+2 x+1\right) d x=\left[x^{3}+x^{2}+x\right]_{x=-1}^{x=2}=\left[(2)^{3}+(2)^{2}+(2)\right]-\left[(-1)^{3}+(-1)^{2}+(-1)\right]$
$=(8+4+2)-(-1+1-1)=14-(-1)=15$
b) First, determine which curve is higher over interval [1,3]: pick some value $c \in(1,3)$, say $c=2$

Then, $g(2)=10+e^{2(2)}=10+e^{4} \approx 64.6$, and $h(2)=4+\ln 2 \approx 4.69 \Longrightarrow g(t) \geq h(t)$ on [1,3]
Hence, Area $=\int_{1}^{3}[g(t)-h(t)] d t=\int_{1}^{3}\left[\left(10+e^{2 t}\right)-(4+\ln t)\right] d t=\int_{1}^{3}\left(6+e^{2 t}-\ln t\right) d t$
$=\left[6 t+\frac{1}{2} e^{2 t}-(t \ln t-t)\right]_{t=1}^{t=3}=\left(18+\frac{1}{2} e^{6}-3 \ln 3+3\right)-\left(6+\frac{1}{2} e^{2}-1 \ln 1+1\right)$
$=14-\ln 27+\frac{1}{2}\left(e^{6}-e^{2}\right) \approx 208.724032$
5. Find points of intersection by solving equation $f(x)=g(x)$ for x :
$f(x)=g(x) \Longleftrightarrow x^{4}=x \Longleftrightarrow x^{4}-x=0 \Longleftrightarrow x\left(x^{3}-1\right)=0 \Longleftrightarrow x=0$ or $x^{3}-1=0$
$\Longleftrightarrow x=0$ or $x^{3}=1 \Longleftrightarrow x=0$ or $x=1 \Longrightarrow$ interval is $[0,1]$
Now, determine which curve is higher over interval $[0,1]$: pick some value $c \in(0,1)$, say $c=\frac{1}{2}$
Then, $f\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^{4}=\frac{1}{16} \approx 0.0625$, and $g\left(\frac{1}{2}\right)=\frac{1}{2}=0.5 \Longrightarrow g(x) \geq f(x)$ on $[0,1]$
Hence, Area $=\int_{0}^{1}[g(x)-f(x)] d x=\int_{0}^{1}\left(x-x^{4}\right) d x=\left[\frac{1}{2} x^{2}-\frac{1}{5} x^{5}\right]_{x=0}^{x=1}=\left(\frac{1}{2}-\frac{1}{5}\right)-(0-0)=\frac{3}{10}$
6. First, find (\bar{x}, \bar{p}) by solving $D(x)=S(x)$ for x :
$D(x)=S(x) \Longleftrightarrow-0.1 x^{2}-x+40=0.1 x^{2}+2 x+20 \Longleftrightarrow 0.2 x^{2}+3 x-20=0 \Longleftrightarrow 2 x^{2}+30 x-200=0$
$\Longleftrightarrow x^{2}+15 x-100=0 \Longleftrightarrow(x+20)(x-5)=0 \Longleftrightarrow x=-20$ or $x=5$,
but a negative x -value in this context is absurd, so discard $x=-20$.
Hence, $\bar{x}=5$, now find \bar{p} by computing $D(\bar{x})$ or $S(\bar{x})$, whichever you prefer :
$\bar{p}=S(\bar{x})=S(5)=0.1(5)^{2}+2(5)+20=32.5$
Now, find the consumers' surplus : $C S=\int_{0}^{\bar{x}}[D(x)-\bar{p}] d x=\int_{0}^{5}\left[\left(-0.1 x^{2}-x+40\right)-(32.5)\right] d x$

$$
\Longrightarrow C S=\int_{0}^{5}\left(-0.1 x^{2}-x+7.5\right) d x=\left[\frac{-0.10}{3} x^{3}-\frac{1}{2} x^{2}+7.5 x\right]_{x=0}^{x=5} \approx 20.83333
$$

Thus, consumers' surplus $=(20.8333)(100)=\$ 2083.33$
Now, find the suppliers' surplus : $P S=\int_{0}^{\bar{x}}[\bar{p}-S(x)] d x=\int_{0}^{5}\left[32.5-\left(0.1 x^{2}+2 x+20\right)\right] d x$

$$
\Longrightarrow P S=\int_{0}^{5}\left(-0.1 x^{2}-2 x+12.5\right) d x=\left[\frac{-0.10}{3} x^{3}+x^{2}+12.5 x\right]_{x=0}^{x=5} \approx 33.3333
$$

Thus, suppliers' surplus $=(33.3333)(100)=\$ 3333.33$
REMARK: Why are the surpluses multiplied by 100 at the end?? ANSWER: Read the problem carefully...
7. This is asking for the amount of an annuity, which is the regular deposits to the retirement account.

So, $P=4000$ dollars $/ \mathrm{yr}, r=0.08, T=\overline{20 \mathrm{yrs}}$, and $m=1$ (since 4000 dollars is deposited once per year)
Hence, $A=\frac{m P}{r}\left(e^{r T}-1\right)=\frac{(1)(4000)}{(0.08)}\left[e^{(0.08)(20)}-1\right]=\$ 197,651.62$
8. This is asking for the present value of an income stream.

So, $R(t)=80,000$ dollars $/ \mathrm{yr}, r=0.10, T=10 \mathrm{yrs}$
Hence, $P V=\int_{0}^{T} R(t) e^{-r t} d t=\int_{0}^{10} 80,000 e^{-0.10 t} d t=80,000 \int_{0}^{10} e^{-0.10 t} d t$
REMARK: The variable t is the variable of integration - do not confuse t with T !
This integral requires substitution:
Let $u=-0.10 t$, then $\frac{d u}{d t}=[-0.10 t]^{\prime}=-0.10 \Longleftrightarrow d u=-0.10 d t \Longleftrightarrow d t=-\frac{1}{0.10} d u$
Don't forget to update the limits of integration: $u(10)=-0.10(10)=-1, u(0)=-0.10(0)=0$
So, $P V=80,000 \int_{0}^{10} e^{-0.10 t} d t=80,000 \int_{0}^{-1} e^{u}\left(-\frac{1}{0.10} d u\right)=\frac{80,000}{0.10} \int_{-1}^{0} e^{u} d u=800,000\left[e^{u}\right]_{u=-1}^{u=0}$
$=800,000\left[e^{0}-e^{-1}\right]=800,000\left[1-e^{-1}\right] \approx \$ 505,696.45$
REMARK: Why did the negative sign vanish during the integration?
Because the 'flip interval' rule was used (see the Supplementary Notes about definite integrals.)
9. a) $L(0.3)=\frac{17}{18}(0.3)^{2}+\frac{1}{18}(0.3) \approx 0.1017, L(0.6)=\frac{17}{18}(0.6)^{2}+\frac{1}{18}(0.6) \approx 0.3733$
b) $L(0.3)=0.1017$ means that the poorest 30% of the country receives 10.17% of the total income $L(0.6)=0.3733$ means that the poorest 60% of the country receives 37.33% of the total income
c) $G=2 \int_{0}^{1}[x-L(x)] d x=2 \int_{0}^{1}\left[x-\left(\frac{17}{18} x^{2}+\frac{1}{18} x\right)\right] d x=2 \int_{0}^{1}\left(-\frac{17}{18} x^{2}+\frac{17}{18} x\right) d x$
$=(2)\left(\frac{17}{18}\right) \int_{0}^{1}\left(-x^{2}+x\right) d x=\frac{17}{9}\left[-\frac{1}{3} x^{3}+\frac{1}{2} x^{2}\right]_{x=0}^{x=1}=\frac{17}{9}\left(-\frac{1}{3}+\frac{1}{2}\right)=\frac{17}{9}\left(\frac{1}{6}\right)=\frac{17}{54} \approx 0.3148$
(B1) DEFINITION: A function f is even if $f(-x)=f(x)$. A function f is odd if $f(-x)=-f(x)$
a) f is odd
b) g is even
c) h is neither even nor odd
d) φ is neither even nor odd

Show the appropriate work to justify your choice of even, odd, or neither.
Here's the work for part (a) :
$f(-x)=2(-x)^{59}-\frac{1}{7}(-x)^{11}-(-x)=2(-1)^{59}\left(x^{59}\right)-\frac{1}{7}(-1)^{11}\left(x^{11}\right)+x$
$=2(-1) x^{59}-\frac{1}{7}(-1) x^{11}+x=-2 x^{59}+\frac{1}{7} x^{11}+x=-\left(2 x^{59}-\frac{1}{7} x^{11}-x\right)=-f(x) \Longrightarrow f$ is odd
(B2) ???? (Come by my office hours and tell me what your answer is.)

