## SUMMARY OF THE DEFINITE INTEGRAL

## NOTATION FOR THE DEFINITE INTEGRAL:

$\int_{a}^{b} f(x) d x$ reads "The integral of $f(x)$ from $a$ to $b$ with respect to $x$ "
$a$ and $b$ are called the limits of integration, and $a<b$.
Here, $x$ is called a dummy variable - any variable can be used since it just acts as a label:
For example, $\int_{a}^{b} x^{2} d x=\int_{a}^{b} y^{2} d y=\int_{a}^{b} z^{2} d z=\int_{a}^{b} w^{2} d w=\cdots$

## DEFINITION OF THE DEFINITE INTEGRAL:

$\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} h f\left(x_{i}\right)$, where $h=\frac{b-a}{n}$ is the step size, and $n$ is the \# of rectangles used.
(i.e. approximating the area under the curve improves as more rectangles are used)


## INTERPRETATION OF THE DEFINITE INTEGRAL:

Geometrically, $\int_{a}^{b} f(x) d x$ is the area bounded by curve $f(x)$, the x-axis \& vertical lines $x=a \& x=b$.
Note that any area below the $\mathbf{x}$-axis is considered negative area.
In applications, if $f^{\prime}(x)$ is the rate of change of a quantity,
then $\int_{a}^{b} f^{\prime}(x) d x$ is the total amount of that quantity from $x=a$ to $x=b$.
Examples:


If $s^{\prime}(t)$ is the speed at time $t$, then $\int_{t_{0}}^{t_{1}} s^{\prime}(t) d t$ is the total distance traveled from time $t_{0}$ to time $t_{1}$.
If $C^{\prime}(x)$ is the marginal cost of making the $x^{t h}$ widget,
then $\int_{0}^{8} C^{\prime}(x) d x$ is the total cost of making the first 8 widgets,
and $\int_{5}^{20} C^{\prime}(x) d x$ is the total cost of making the $6^{\text {th }}$ through $20^{\text {th }}$ widgets.

## DEFINITE INTEGRAL RULES:

Constant Multiple Rule: $\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x \quad$ [ $k$ is a real number]
Sum/Difference Rule: $\int_{a}^{b}[f(x) \pm g(x)] d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x$
Point Rule: $\int_{a}^{a} f(x) d x=0$
Flip Interval Rule: $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$
Lump Intervals Rule: $\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x=\int_{a}^{b} f(x) d x \quad[a<c<b]$


## References

[1] S. Tan, Applied Mathematics for the Managerial, Life, and Social Sciences. Brooks Cole, Belmont, CA, 5th Edition, 2008.

