Josh Engwer – Business Calculus – Texas Tech University – 07/25/2011

SUMMARY OF THE INDEFINITE INTEGRAL

NOTATION FOR THE INDEFINITE INTEGRAL (AKA ANTI-DERIVATIVE):

$$\int f(x) dx$$
 reads "The integral of $f(x)$ with respect to x"

Here, x is called a **dummy variable** – any variable can be used since it just acts as a **label**:

For example,
$$\int x^2 dx = \int y^2 dy = \int z^2 dz = \int w^2 dw = \cdots$$

DEFINITION OF THE INTEGRAL OF $f(x)$: $F(x) = \int f(x) dx \iff F'(x) = f(x)$

INTERPRETATION OF THE INTEGRAL:

The integral of f(x) is the **inverse operation** of the derivative of f(x). Therefore, the integral of f(x) is a function plus an **arbitrary constant** C: $\int f(x) dx = F(x) + C$ Geometrically, $\int f(x) dx$ is a **family of curves** F(x) + C where the slope of F(x) equals f(x) at each x.

INTEGRAL RULES:

Constant Rule: $\int k \, dx = kx + C$ [k is a real number] Power Rule: $\int x^n \, dx = \frac{x^{n+1}}{n+1} + C$ [$n \neq -1$ is a real number] Constant Multiple Rule: $\int kf(x) \, dx = k \int f(x) \, dx$ [k is a real number] Sum/Difference Rule: $\int [f(x) \pm g(x)] \, dx = \int f(x) \, dx \pm \int g(x) \, dx$ Natural Exponential Rule: $\int e^x \, dx = e^x + C$ [$e \approx 2.7183$ is the natural logarithm base] Natural Logarithm Rule: $\int \frac{1}{x} \, dx = \ln |x| + C$ Exponential Rule: $\int a^x \, dx = \frac{a^x}{\ln a} + C$ [$a \neq 1$ is a positive real number]

REMARKS:

Functions of arbitrary constants yield arbitrary constants. (e.g. $C_1 + C_2 = C_3$, $\sqrt{C_1} = C_4$, $e^{C_1} = C_5$,...) More complicated integrals often can be evaluated using the **Substitution Method**. There are no "product or quotient rules" for integrals.

There are integrals that cannot be represented by simple formulas – such integrals are called **nonelementary**.

Here are some nonelementary integrals:

$$\int e^{x^2} dx, \quad \int e^{e^x} dx, \quad \int \frac{e^x}{x} dx, \quad \int \sqrt{1+x^4} dx, \quad \int \ln(\ln x) dx, \quad \int \frac{1}{\ln x} dx, \quad \int x^x dx$$

These shortcomings of integration are typically addressed in a 2^{nd} semester calculus course (MATH 1352).

References

[1] S. Tan, *Applied Mathematics for the Managerial, Life, and Social Sciences*. Brooks Cole, Belmont, CA, 5th Edition, 2008.