INFLECTION POINTS & CONCAVITY OF FUNCTIONS

DEFINITIONS:

 $f''(x) > 0 \iff f(x)$ is **concave up** ('smiles') at point x $f''(x) < 0 \iff f(x)$ is **concave down** ('frowns') at point x

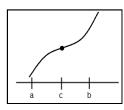
f(x) has an inflection point at $x \iff$ the concavity of f(x) changes at x. Inflection points can only **possibly** occur where f''(x) = 0 or f''(x) does not exist (DNE).

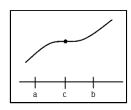
INTERPRETATION OF THE 2^{nd} DERIVATIVE (CONCAVITY):

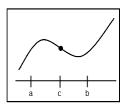
In applications, 2^{nd} derivative is synonymous with instantaneous rate of rate of change. (e.g. If s(t) measures distance over time, then $s''(t_0)$ is the instantaneous acceleration at time t_0 .)

If P(x) measures the total profit gained after x items are sold, then:

P'(x) > 0 & P''(x) > 0 means profit is increasing **more and more**.

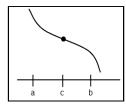

P'(x) > 0 & P''(x) < 0 means profit is increasing less and less.

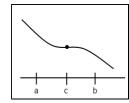

P'(x) < 0 & P''(x) < 0 means profit is decreasing more and more.

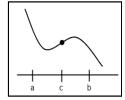

P'(x) < 0 & P''(x) > 0 means profit is decreasing less and less.

CASE I:

x	a	c	$\mid b \mid$
f''(x)	_	0	+
concavity	\cap	*	U

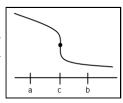


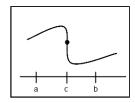


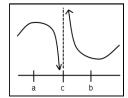


CASE II:

x	a	c	b
f''(x)	+	0	_
concavity	U	*	\cap

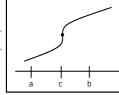


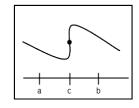


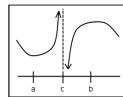


CASE III:

x	a	c	b
f''(x)	_	DNE	+
concavity	\cap	*	U







CASE IV:

x	a	c	b
f''(x)	+	DNE	_
concavity	U	*	\cap

References [1] S. Tan, Applied Mathematics for the Managerial, Life, and Social Sciences. Brooks Cole, Belmont, CA, 5th Edition, 2008.