SUMMARY OF LIMITS \& CONTINUITY

NOTATIONS FOR LIMITS:

$\lim _{x \rightarrow a} f(x)=L$ means The limit of $f(x)$ as x approaches a is L.
$\lim _{x \rightarrow a^{-}} f(x)=L$ means The limit of $f(x)$ as x approaches a from the left is L.
$\lim _{x \rightarrow a^{+}} f(x)=L$ means The limit of $f(x)$ as x approaches a from the right is L.
$\lim _{x \rightarrow \infty} f(x)=L$ means The limit of $f(x)$ as x increases without bound is L.
$\lim _{x \rightarrow-\infty} f(x)=L$ means The limit of $f(x)$ as x decreases without bound is L.

RELATIONSHIP BETWEEN ONE-SIDED \& TWO-SIDED LIMITS:

$\lim _{x \rightarrow a} f(x)=L \Longleftrightarrow \lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=L$.
$\lim _{x \rightarrow a^{-}} f(x) \neq \lim _{x \rightarrow a^{+}} f(x) \Rightarrow \lim _{x \rightarrow a} f(x)$ does not exist (DNE).
INDETERMINATE FORMS: $\frac{0}{0}, \frac{\infty}{\infty}$
If direct evaluation of a limit yields an indeterminate form, then try simplifying the function.
Consider factoring, rationalizing the numerator or denominator, or dividing by the the highest degree monic term.

LIMIT RULES:

Constant Rule: $\lim _{x \rightarrow a} k=k \quad$ [k is a real number]
Constant Multiple Rule: $\lim _{x \rightarrow a}[c g(x)]=c \lim _{x \rightarrow a} g(x) \quad$ [c is a real number]
Sum/Difference Rule: $\lim _{x \rightarrow a}[f(x) \pm g(x)]=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)$
Product Rule: $\lim _{x \rightarrow a}[f(x) g(x)]=\left[\lim _{x \rightarrow a} f(x)\right]\left[\lim _{x \rightarrow a} g(x)\right]$
Quotient Rule: $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)} \quad$ [NOTE: $\lim _{x \rightarrow a} g(x) \neq 0$]
Power Rule: $\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n} \quad[n$ is a real number]
Exponential Rule: $\lim _{x \rightarrow a} k^{f(x)}=k^{\left[\lim _{x \rightarrow a} f(x)\right]} \quad$ [k is a positive real number]

CONTINUITY OF A FUNCTION:

A function f is continuous at point $x=a$ if $f(a)$ is defined, $\lim _{x \rightarrow a} f(x)$ is defined, and $\lim _{x \rightarrow a} f(x)=f(a)$.
Polynomials are continuous everywhere.
Rational functions $\left[\frac{P(x)}{Q(x)}\right.$, where $P(x), Q(x)$ are polynomials $]$ are continuous everywhere $Q(x) \neq 0$.

References

[1] S. Tan, Applied Mathematics for the Managerial, Life, and Social Sciences. Brooks Cole, Belmont, CA, 5th Edition, 2008.

