STEP 1: Identify \& label all relevant variables.
STEP 1 $1 / 2$: If applicable, draw a picture.
STEP 2: Identify the multivariable function to be optimized.
STEP 3: Identify all constraints. Expect some constraints to be equations, others to be inequalities.
Some will be blatantly obvious, others not so much...
STEP $3^{1} / 2$: Solve each equality constraint in terms of the common variable. [e.g. x]
If there are several common variables, pick the easiest to work with.
Then, write each inequality constraint in terms of the common variable.
STEP 4: Use the equality constraint(s) to rewrite the function in terms of only ONE variable. [e.g. $f(x)$]
STEP 5: Find the practical domain of $f . \quad \operatorname{Pract} \operatorname{Dom}(f):=\operatorname{Dom}(f) \cap$ (each inequality constraint involving only x)
STEP 6: Pose the optimization problem in terms of $f(x)$, absolute extrema, PractDom (f).
STEP 7: If $\operatorname{PractDom}(f)$ is closed \& bounded, that is, $\operatorname{PractDom}(f)=[a, b]$, where $-\infty<a<b<\infty$, then:
Abs max value of f over $[a, b]=\max \left\{f(a), f(b), f\left(c_{1}\right), f\left(c_{2}\right), \ldots, f\left(c_{k}\right)\right\}$, where c_{1}, \ldots, c_{k} are critical \#'s of f.
Abs max of f over $[a, b]$ is the corresponding x-value to the abs max value.
Abs min value of f over $[a, b]=\min \left\{f(a), f(b), f\left(c_{1}\right), f\left(c_{2}\right), \ldots, f\left(c_{k}\right)\right\}$, where c_{1}, \ldots, c_{k} are critical \#'s of f.
Abs min of f over $[a, b]$ is the corresponding x-value to the abs min value.
STEP 8: If PractDom (f) is NOT closed \& bounded, use Curve Sketching techniques. (See [CURVE-SKETCH-II])

REMARK: This is the most general procedure for constrained optimization problems.
It's possible (but not likely) that the picture, practical domain, or function to optimize may be given a priori.

[^0]EXAMPLE: Find the points on the ellipse $4 x^{2}+y^{2}=4$ that are farthest away from the point $(1,0)$.
What is the maximum distance possible?
STEP 1: Let (x, y) denote the point(s) on the ellipse farthest from the point $(1,0)$.
STEP $\mathbf{1}^{1} / 2$: Draw an appropriate picture:

STEP 2: Maximizing distance is equivalent to maximizing the square of the distance.
This spares us from dealing with a square root (and the Chain Rule later on).
Hence, let $D(x, y)=(x-1)^{2}+(y-0)^{2}=\left(x^{2}-2 x+1\right)+y^{2}$
STEP 3: The one constraint is that the point(s) must lie on the ellipse. Thus the equality constraint is $4 x^{2}+y^{2}=4$.
STEP $3^{1} / 2$: It's slightly easier to solve for $y: y= \pm \sqrt{4-4 x^{2}}$
STEP 4: $f(x)=D\left(x, \pm \sqrt{4-4 x^{2}}\right)=x^{2}-2 x+1+\left(\pm \sqrt{4-4 x^{2}}\right)^{2}=x^{2}-2 x+1+4-4 x^{2}=-3 x^{2}-2 x+5$
STEP 5: $\operatorname{PractDom}(f)=\operatorname{Dom}(f)=[-1,1] \quad($ Why is $\operatorname{Dom}(f)=[-1,1]$ instead of \mathbb{R} ???)
STEP 6: "Find the absolute maximum of $f(x)$ over the interval $[-1,1]$."
STEP 7: Observe that $\operatorname{PractDom}(f)=[-1,1]$ is closed \& bounded.
$f^{\prime}(x)=\frac{d}{d x}\left[-3 x^{2}-2 x+5\right]=-6 x-2 \stackrel{\text { set }}{=} 0 \Longrightarrow x=-\frac{1}{3}$ is the only critical number of f.
Absolute max value of f over $[-1,1]=\max \left\{f(-1), f(1), f\left(-\frac{1}{3}\right)\right\}=\max \left\{4,0, \frac{16}{3}\right\}=\frac{16}{3}$
\Longrightarrow absolute max occurs at $x=-\frac{1}{3} \Longrightarrow y= \pm \sqrt{4-4\left(-\frac{1}{3}\right)^{2}}= \pm \frac{\sqrt{32}}{3}$

Therefore, the two points on the ellipse farthest from the point $(1,0)$ are $\left(-\frac{1}{3},-\frac{\sqrt{32}}{3}\right)$ and $\left(-\frac{1}{3}, \frac{\sqrt{32}}{3}\right)$

Remember, $f(x)$ is modeling the square of the distance, hence:
Maximum distance possible is the square-root of the abs max value of f over $[-1,1]=\sqrt{\frac{16}{3}}=\frac{4}{\sqrt{3}} \approx 2.3094$
Therefore, the maximum distance possible is $\frac{4}{\sqrt{3}} \approx 2.3094$

[^0]: (C) 2012 Josh Engwer - Revised November 5, 2012

