CONTINUITY OF FUNCTIONS

NOTATION FOR CONTINUITY:

e A function f is continuous at a point z = p < f € C°({p})

e A function f is continuous on a set S <= f € C%(S) <= Vpe S, f € C°({p})

e A function f is continuous on a closed interval [a,b] <= f € C°[a,b] <= Vp € [a,b], f € C°({p})
e A function f is continuous on an open interval (a,b) <= f € C%(a,b) <= Vp € (a,b), f € C°({p})

e A function f is continuous everywhere <= f € C%(—o0,00) <= f € C°(R)

DEFINITION OF CONTINUITY: (p€R)

o fcC'p}) — [f(p) exists AND lim f(z) exists AND lim f(z) = f(p)]

T—p T—p

e In plain English: If z is 'near’ p, then f(z) must be 'near’ f(p)

e A function that is not continuous at point x = p is said to have a discontinuity at x = p

CONTINUITY RULES: (k,p €R)

e (C.0) (Constants) f(z) =k = f¢c C°(R)

e (C.1) (Polynomials) f is a polynomial = f € C°(R)

e (C.2) (Elementary Fcns) f is an elementary function = f € C°(Dom(f))

e (C.3) (Multiple Rule) f € C°({p}) = kf € C°({p})

e (C.4) (Sum/Diff Rule) f,g € C°({p}) = f+ge C°({p})

e (C.5) (Product Rule) f,g € C°({p}) = fg€C°({p})

e (C.6) (Quotient Rule) f,g € C°({p}) AND g(p) #0 = f/g € C°({p})

o (C.7) (Composition Rule) g € C°({p}) AND f € C°({g(p)}) = foge C°({p})

COMPOSITION LIMIT RULE: (p€R)

o [lmg)=L AND jeC’({L})] = lim[lg()] = f(lim g(x)) = (L)

T—p
e What this means: If the outer function f of composition f o g is continuous at x = p, then the limit as x approaches p

can be passed inside the outer function f.

ONE-SIDED CONTINUITY: (a,b€Rst. a<b)

e A function f is right-continuous at a <= f ¢ CT({a}) <— lim+ f(z) = f(a)
Tr—a
e A function f is left-continuous at b <= f € C~({b}) < lim f(z) = f(b)
z—b—
e Relationship to '2-sided continuity’: f € C~({p}) AND f € C~({p}) <= f € C°({p})

e Checking 1-sided continuity is only necessary for determining if a piecewise function is continuous on a closed interval:
f€C%a,b) AND f e Ct({a}) AND f e C~({b}) < f e C°a,b]

e 1-sided continuity shows up in junior-level probability (MATH 3342) and senior-level analysis (MATH 4350) courses.

TYPES OF DISCONTINUITY: See Strauss pg 70 for visual examples of these discontinuities.

e Removable: Either |f(c) DNE AND lim f(z) € ]R] OR [f(c) exists AND lim f(z) € R AND lim f(z) # f(c)}
T—c r—c
e Jump: Both 1-sided limits are finite & unequal. i.e., lim f(z) € R AND hm f(z) e RAND lim f(z) # lim+ f(z)
r—c™ Tr—cC

T—cT z—ct

e Break: At least one 1-sided limit is infinite. i.e., [ lim f(z) = —oc0or + oo} AND/OR [ lirn+ f(z) = —c0 or + oo]
Tr—rC

xT—rCc—
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EXAMPLE: Determine the interval(s) where f(z) = 2% — 22® — 32% — 4z — 5 is continuous.

Observe that f is a polynomial (and, thus, elementary) = Dom(f) =R £2 fe CO(R) — fe€ CO(—oo7oo)

EXAMPLE: Determine the interval(s) where g(t) = m is continuous.
Observe that g is a rational function and, thus, elementary.
Since g is a rational function, first factor the denominator: t® — t* — 12¢% = #3(¢? —t — 12) = t*(t — 4)(t + 3)
Next, set denominator equal to zero & solve for t: t° —t* —12t> =0 = t3(t —4)(t +3) =0 = t € {-3,0,4}

Hence, Dom(g) = R\ {t € R: > —t* —12t> =0} =R\ {-3,0,4} = (—00, —3) U (=3,0) U (0,4) U (4, 0)

L2 e (Dom(g)) — |ge® (R\ {73,0,4}) — gec CO((foo, —3)U(—3,0)U(0,4) U (4, oo))

REMARK: We say g has discontinuities at the t-values —3,0, and 4.

_ 9,2
EXAMPLE: (a) Where is h(z) = 2284-572:—6 continuous? (b) Identify the type of each discontinuity.
Observe that h is a rational function and, thus, elementary, so factor numerator & denominator:
8 — 227 2(4—2%) 22— 2)(2+2)

Mo) = s 16 (z+2)(z+3)  (2+2)(2+3)
Hence, Dom(h) =R\ {t €R:2*+52+6=0} =R\ {-3,-2} = (—00, —3) U (=3, —2) U (-2, 00)

L2 peo (Dom(h)) — |hec® (R \ {-3, —2}) > he 00((—00, —3)U(=3,-2) U (—2700))

(b) From part (a), the two discontinuities of h occur at z = —3 and z = —2

To determine the type of discontinuity at z = —3, compute h(—3), lim h(z), lim h(z), and lim h(z):
z——3 z—(—3)—" z—(=3)*+

h(~3) = DNE, lim_h(z) = lim 22-2)2+2) s [

=% @42z 13) “m32<2—Z><2+z)] [hm

lim
z—— z2=»-32+2| |2=-32+3

22 - (-3)2+ (-3))] [é} LEH}S Z%S} — 10 lim Jlr3 Y 10tim L = DNE

(—3) + 2 z——3 Z u—0 U
lim  h(z)= lim 2CZACED N, L 10 lim - 10(—00) 2 —00
2 (=3)~ (-3~ (24+2)(2+3) z=(-3)- 2+ 3 u—0— U
Therefore, since l(im> h(z) = —oo0, ‘ h has a break discontinuity at z = —3 ‘
z—=(—=3)~

To determine the type of discontinuity at z = —2, compute h(—2), lim h(z), lim h(z), and lim h(z):
z—>—2 z—(—2)~ z—(—2)*

_ ; vs 2(2 - (=2)(2+(=2) _ 0 e . .
h(—2) = DNE, zl_l}rr_lz h(z) = (7213 ~0 —> Rewrite/simplify function (by factoring)
, o 2@=2)@242) 22— 2) vs 22— (=2))

P m k)= e A T s (o3

=8

Therefore, since h(—2) = DNE and lim2 h(z) € R, ’ h has a removable (hole) discontinuity at z = —2 ‘
z——

t+1 ,ift<5b

3 PO (a) Ts v € C°({5})? (Justify) (b) If not, what type of discontinuity occurs?
) I -

EXAMPLE: Let v(t) = {

(a) lim v(t)=(5)+1=6 and lim v(t)=(5)" =125

t—5— t—51

Since lim v(t) # lim v(t), ’v is NOT continuous at t =5 ‘
t—5— t—5+

(b) The fact that both 1-sided limits are finite but unequal means, by definition,

that a ’jump discontinuity ‘ occurs at t = 5.

cos(3z) ,ifx<m
EXAMPLE: Let T(z) = ¢ -1 ,ifx =m . Is T continuous at x = 7?7 (Justify)
sin (%x) Jifx>w

lim T'(z) = cos(3w) = cos(n) = —1, lim T'(x) =sin <g7r> =-1,T(r)=-1

=T z—7mt

T is continuous at x = 7

= lim T(z) = —1. Thus, since T'(7) exists, lim T'(z) exists, and lim T'(z) = T'(n),
T T

T—T
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