CONTINUITY OF FUNCTIONS

NOTATION FOR CONTINUITY:

- A function f is continuous at a point $x=p \Longleftrightarrow f \in C^{0}(\{p\})$
- A function f is continuous on a set $S \Longleftrightarrow f \in C^{0}(S) \Longleftrightarrow \forall p \in S, f \in C^{0}(\{p\})$
- A function f is continuous on a closed interval $[a, b] \Longleftrightarrow f \in C^{0}[a, b] \Longleftrightarrow \forall p \in[a, b], f \in C^{0}(\{p\})$
- A function f is continuous on an open interval $(a, b) \Longleftrightarrow f \in C^{0}(a, b) \Longleftrightarrow \forall p \in(a, b), f \in C^{0}(\{p\})$
- A function f is continuous everywhere $\Longleftrightarrow f \in C^{0}(-\infty, \infty) \Longleftrightarrow f \in C^{0}(\mathbb{R})$

DEFINITION OF CONTINUITY: $\quad(p \in \mathbb{R})$

- $f \in C^{0}(\{p\}) \Longleftrightarrow\left[f(p)\right.$ exists AND $\lim _{x \rightarrow p} f(x)$ exists AND $\left.\lim _{x \rightarrow p} f(x)=f(p)\right]$
- In plain English: If x is 'near' p, then $f(x)$ must be 'near' $f(p)$
- A function that is not continuous at point $x=p$ is said to have a discontinuity at $x=p$

CONTINUITY RULES: $\quad(k, p \in \mathbb{R})$

- (C.0) (Constants) $f(x)=k \Longrightarrow f \in C^{0}(\mathbb{R})$
- (C.1) (Polynomials) f is a polynomial $\Longrightarrow f \in C^{0}(\mathbb{R})$
- (C.2) (Elementary Fcns) f is an elementary function $\Longrightarrow f \in C^{0}(\operatorname{Dom}(f))$
- (C.3) (Multiple Rule) $f \in C^{0}(\{p\}) \Longrightarrow k f \in C^{0}(\{p\})$
- (C.4) (Sum/Diff Rule) $f, g \in C^{0}(\{p\}) \Longrightarrow f \pm g \in C^{0}(\{p\})$
- (C.5) (Product Rule) $f, g \in C^{0}(\{p\}) \Longrightarrow f g \in C^{0}(\{p\})$
- (C.6) (Quotient Rule) $f, g \in C^{0}(\{p\})$ AND $g(p) \neq 0 \Longrightarrow f / g \in C^{0}(\{p\})$
- (C.7) (Composition Rule) $g \in C^{0}(\{p\})$ AND $f \in C^{0}(\{g(p)\}) \Longrightarrow f \circ g \in C^{0}(\{p\})$

COMPOSITION LIMIT RULE: $\quad(p \in \mathbb{R})$

- $\left[\lim _{x \rightarrow p} g(x)=L \quad\right.$ AND $\left.\quad f \in C^{0}(\{L\})\right] \Longrightarrow \lim _{x \rightarrow p} f[g(x)]=f\left(\lim _{x \rightarrow p} g(x)\right)=f(L)$
- What this means: If the outer function f of composition $f \circ g$ is continuous at $x=p$, then the limit as x approaches p can be passed inside the outer function f.

ONE-SIDED CONTINUITY: $\quad(a, b \in \mathbb{R}$ s.t. $a<b)$

- A function f is right-continuous at $a \Longleftrightarrow f \in C^{+}(\{a\}) \Longleftrightarrow \lim _{x \rightarrow a^{+}} f(x)=f(a)$
- A function f is left-continuous at $b \Longleftrightarrow f \in C^{-}(\{b\}) \Longleftrightarrow \lim _{x \rightarrow b^{-}} f(x)=f(b)$
- Relationship to '2-sided continuity': $f \in C^{-}(\{p\})$ AND $f \in C^{-}(\{p\}) \Longleftrightarrow f \in C^{0}(\{p\})$
- Checking 1-sided continuity is only necessary for determining if a piecewise function is continuous on a closed interval: $f \in C^{0}(a, b)$ AND $f \in C^{+}(\{a\})$ AND $f \in C^{-}(\{b\}) \Longleftrightarrow f \in C^{0}[a, b]$
- 1-sided continuity shows up in junior-level probability (MATH 3342) and senior-level analysis (MATH 4350) courses.

TYPES OF DISCONTINUITY: See Strauss pg 70 for visual examples of these discontinuities.

- Removable: Either $\left[f(c)\right.$ DNE AND $\left.\lim _{x \rightarrow c} f(x) \in \mathbb{R}\right]$ OR $\left[f(c)\right.$ exists AND $\lim _{x \rightarrow c} f(x) \in \mathbb{R}$ AND $\left.\lim _{x \rightarrow c} f(x) \neq f(c)\right]$
- Jump: Both 1-sided limits are finite \& unequal. i.e., $\lim _{x \rightarrow c^{-}} f(x) \in \mathbb{R}$ AND $\lim _{x \rightarrow c^{+}} f(x) \in \mathbb{R}$ AND $\lim _{x \rightarrow c^{-}} f(x) \neq \lim _{x \rightarrow c^{+}} f(x)$
- Break: At least one 1-sided limit is infinite. i.e., $\left[\lim _{x \rightarrow c^{-}} f(x)=-\infty\right.$ or $\left.+\infty\right]$ AND/OR $\left[\lim _{x \rightarrow c^{+}} f(x)=-\infty\right.$ or $\left.+\infty\right]$

EXAMPLE: Determine the interval(s) where $f(x)=x^{6}-2 x^{3}-3 x^{2}-4 x-5$ is continuous.
Observe that f is a polynomial (and, thus, elementary) $\Longrightarrow \operatorname{Dom}(f)=\mathbb{R} \xlongequal{C .2} f \in C^{0}(\mathbb{R}) \Longleftrightarrow f \in C^{0}(-\infty, \infty)$
EXAMPLE: Determine the interval(s) where $g(t)=\frac{1}{t^{5}-t^{4}-12 t^{3}}$ is continuous.
Observe that g is a rational function and, thus, elementary.
Since g is a rational function, first factor the denominator: $t^{5}-t^{4}-12 t^{3}=t^{3}\left(t^{2}-t-12\right)=t^{3}(t-4)(t+3)$
Next, set denominator equal to zero \& solve for t : $t^{5}-t^{4}-12 t^{3}=0 \Longrightarrow t^{3}(t-4)(t+3)=0 \Longrightarrow t \in\{-3,0,4\}$
Hence, $\operatorname{Dom}(g)=\mathbb{R} \backslash\left\{t \in \mathbb{R}: t^{5}-t^{4}-12 t^{3}=0\right\}=\mathbb{R} \backslash\{-3,0,4\}=(-\infty,-3) \cup(-3,0) \cup(0,4) \cup(4, \infty)$

$$
\stackrel{C .2}{\Longrightarrow} g \in C^{0}(\operatorname{Dom}(g)) \Longrightarrow g \in C^{0}(\mathbb{R} \backslash\{-3,0,4\}) \Longleftrightarrow g \in C^{0}((-\infty,-3) \cup(-3,0) \cup(0,4) \cup(4, \infty))
$$

REMARK: We say g has discontinuities at the t-values $-3,0$, and 4 .
EXAMPLE: (a) Where is $h(z)=\frac{8-2 z^{2}}{z^{2}+5 z+6}$ continuous? (b) Identify the type of each discontinuity.
Observe that h is a rational function and, thus, elementary, so factor numerator \& denominator:
$h(z)=\frac{8-2 z^{2}}{z^{2}+5 z+6}=\frac{2\left(4-z^{2}\right)}{(z+2)(z+3)}=\frac{2(2-z)(2+z)}{(z+2)(z+3)}$
Hence, $\operatorname{Dom}(h)=\mathbb{R} \backslash\left\{t \in \mathbb{R}: z^{2}+5 z+6=0\right\}=\mathbb{R} \backslash\{-3,-2\}=(-\infty,-3) \cup(-3,-2) \cup(-2, \infty)$
$\stackrel{C .2}{\Longrightarrow} h \in C^{0}(\operatorname{Dom}(h)) \Longrightarrow h \in C^{0}(\mathbb{R} \backslash\{-3,-2\}) \Longleftrightarrow h \in C^{0}((-\infty,-3) \cup(-3,-2) \cup(-2, \infty))$
(b) From part (a), the two discontinuities of h occur at $z=-3$ and $z=-2$

To determine the type of discontinuity at $z=-3$, compute $h(-3), \lim _{z \rightarrow-3} h(z), \lim _{z \rightarrow(-3)^{-}} h(z)$, and $\lim _{z \rightarrow(-3)^{+}} h(z)$:
$h(-3)=D N E, \lim _{z \rightarrow-3} h(z)=\lim _{z \rightarrow-3} \frac{2(2-z)(2+z)}{(z+2)(z+3)} \stackrel{L .3}{=}\left[\lim _{z \rightarrow-3} 2(2-z)(2+z)\right]\left[\lim _{z \rightarrow-3} \frac{1}{z+2}\right]\left[\lim _{z \rightarrow-3} \frac{1}{z+3}\right]$

$$
\stackrel{N S}{=}[2(2-(-3))(2+(-3))]\left[\frac{1}{(-3)+2}\right]\left[\lim _{z \rightarrow-3} \frac{1}{z+3}\right]=10 \lim _{z \rightarrow-3} \frac{1}{z+3} \stackrel{C V}{=} 10 \lim _{u \rightarrow 0} \frac{1}{u}=D N E
$$

$\lim _{z \rightarrow(-3)^{-}} h(z)=\lim _{z \rightarrow(-3)^{-}} \frac{2(2-z)(2+z)}{(z+2)(z+3)} \stackrel{N S}{=} 10 \lim _{z \rightarrow(-3)^{-}} \frac{1}{z+3} \stackrel{C V}{=} 10 \lim _{u \rightarrow 0^{-}} \frac{1}{u} \stackrel{S .1}{=} 10(-\infty) \stackrel{E .4}{=}-\infty$
Therefore, since $\lim _{z \rightarrow(-3)^{-}} h(z)=-\infty, h$ has a break discontinuity at $z=-3$
To determine the type of discontinuity at $z=-2$, compute $h(-2), \lim _{z \rightarrow-2} h(z), \lim _{z \rightarrow(-2)^{-}} h(z)$, and $\lim _{z \rightarrow(-2)^{+}} h(z)$:
$h(-2)=D N E, \lim _{z \rightarrow-2} h(z) \stackrel{N S}{=} \frac{2(2-(-2))(2+(-2))}{((-2)+2)((-2)+3)}=\frac{0}{0} \Longrightarrow$ Rewrite/simplify function (by factoring)
$\Longrightarrow \lim _{z \rightarrow-2} h(z)=\lim _{z \rightarrow-2} \frac{2(2-z)(2+z)}{(z+2)(z+3)}=\lim _{z \rightarrow-2} \frac{2(2-z)}{z+3} \stackrel{N S}{=} \frac{2(2-(-2))}{(-2)+3}=8$
Therefore, since $h(-2)=D N E$ and $\lim _{z \rightarrow-2} h(z) \in \mathbb{R}, h$ has a removable (hole) discontinuity at $z=-2$
EXAMPLE: Let $v(t)=\left\{\begin{array}{ll}t+1 & , \text { if } t<5 \\ t^{3} & , \text { if } t \geq 5\end{array}\right.$. (a) Is $v \in C^{0}(\{5\})$? (Justify) (b) If not, what type of discontinuity occurs?
(a) $\lim _{t \rightarrow 5^{-}} v(t)=(5)+1=6$ and $\lim _{t \rightarrow 5^{+}} v(t)=(5)^{3}=125$

Since $\lim _{t \rightarrow 5^{-}} v(t) \neq \lim _{t \rightarrow 5^{+}} v(t), v$ is NOT continuous at $t=5$
(b) The fact that both 1-sided limits are finite but unequal means, by definition,
that a jump discontinuity occurs at $t=5$.
EXAMPLE: Let $T(x)=\left\{\begin{array}{ll}\cos (3 x) & , \text { if } x<\pi \\ -1 & , \text { if } x=\pi \\ \sin \left(\frac{3}{2} x\right) & , \text { if } x>\pi\end{array}\right.$. Is T continuous at $x=\pi$? (Justify)
$\lim _{x \rightarrow \pi^{-}} T(x)=\cos (3 \pi)=\cos (\pi)=-1, \lim _{x \rightarrow \pi^{+}} T(x)=\sin \left(\frac{3}{2} \pi\right)=-1, T(\pi)=-1$
$\Longrightarrow \lim _{x \rightarrow \pi} T(x)=-1$. Thus, since $T(\pi)$ exists, $\lim _{x \rightarrow \pi} T(x)$ exists, and $\lim _{x \rightarrow \pi} T(x)=T(\pi), T$ is continuous at $x=\pi$

