CURVE SKETCHING (I): HILLS, VALLEYS, AND INFLECTION POINTS

EXAMPLE: Let $g(t)=3 t^{4}-2 t^{3}-12 t^{2}+18 t-5$
(a) Identify the domain of g.
$\operatorname{Dom}(g)=\operatorname{Dom}\left(3 t^{4}-2 t^{3}-12 t^{2}+18 t-5\right)=\mathbb{R}=(-\infty, \infty)$
(b) Find all critical numbers of g which lie in the interior of its domain $\Longrightarrow \quad \operatorname{int}(\operatorname{Dom}(g))=\operatorname{int}((-\infty, \infty))=(-\infty, \infty)$
$g^{\prime}(t)=\frac{d}{d x}\left[3 t^{4}-2 t^{3}-12 t^{2}+18 t-5\right] \stackrel{D .5}{=} 12 t^{3}-6 t^{2}-24 t+18$
$g^{\prime}(t) \stackrel{\text { set }}{=} 0 \Longrightarrow 12 t^{3}-6 t^{2}-24 t+18=0 \Longrightarrow 6\left(2 t^{3}-t^{2}-4 t+3\right)=0 \Longrightarrow 2 t^{3}-t^{2}-4 t+3=0$
Now, this cubic polynomial is not obvious to factor since factoring by grouping does not work here.
So, since the cubic polynomial has all integer coefficients, try using the Rational Roots Theorem :
Possible rational solutions are $\pm \frac{3}{1}, \pm \frac{3}{2}, \pm \frac{1}{1}, \pm \frac{1}{2}$
Try $t=1 \Longrightarrow g^{\prime}(1)=12-6-24+18=0 \Longrightarrow t=1$ solves the equation $g^{\prime}(t)=0 \Longrightarrow(t-1)$ factors the cubic.
Now, factor out $(t-1)$ via polynomial division or synthetic division:
$g^{\prime}(t)=0 \Longrightarrow 2 t^{3}-t^{2}-4 t+3=0 \Longrightarrow(t-1)\left(2 t^{2}+t-3\right)=0 \Longrightarrow(t-1)(2 t+3)(t-1)=0 \Longrightarrow t \in\left\{-\frac{3}{2}, 1\right\}$
Now, consider where $g^{\prime}(t)$ is undefined yet $g(t)$ is defined: g^{\prime} is a polynomial $\Longrightarrow g^{\prime}$ is undefined nowhere.
Thus, the critical numbers of g are $t \in\left\{-\frac{3}{2}, 1\right\}$
(c) Identify all relative minima, relative maxima as well as the interval(s) where g increases and decreases.

In order to identify all this, build the slope table for g :

t	-10	$-\frac{3}{2}$	0	1	10
$g^{\prime}(t)$	-	0	+	0	+
slope	\backslash	-	$/$	-	$/$

Relative extrema separate intervals of increasing/decreasing:
g increases over $\left(-\frac{3}{2}, \infty\right)$ OR $\left(-\frac{3}{2}, 1\right) \cup(1, \infty), g$ decreases over $\left(-\infty,-\frac{3}{2}\right)$
(d) Find all CFIP's (candidates for inflection point) of g which lie in the interior of its domain.
$g^{\prime \prime}(t)=\frac{d}{d t}\left[12 t^{3}-6 t^{2}-24 t+18\right] \stackrel{D .5}{=} 36 t^{2}-12 t-24$
$g^{\prime \prime}(t) \stackrel{\text { set }}{=} 0 \Longrightarrow 36 t^{2}-12 t-24=0 \Longrightarrow 12\left(3 t^{2}-t-2\right)=0 \Longrightarrow 3 t^{2}-t-2=0 \Longrightarrow(3 t+2)(t-1)=0 \Longrightarrow t \in\left\{-\frac{2}{3}, 1\right\}$
Now, consider where $g^{\prime \prime}(t)$ is undefined yet $g(t)$ is defined: $g^{\prime \prime}$ is a polynomial $\Longrightarrow g^{\prime \prime}$ is undefined nowhere.
Thus, the CFIP's of g are $t \in\left\{-\frac{2}{3}, 1\right\}$
(e) Identify all inflection points as well as the interval(s) where g is concave up and concave down.

In order to identify all this, build the concavity table for g :

t	-10	$-\frac{2}{3}$	0	1	10
$g^{\prime \prime}(t)$	+	0	-	0	+
concavity	\cup	$*$	\cap	$*$	\cup

Inflection points separate intervals of concave up/concave down:
g is concave up (smiles) over $\left(-\infty,-\frac{2}{3}\right) \cup(1, \infty), g$ is concave down (frowns) over $\left(-\frac{2}{3}, 1\right)$
(f) Sketch the graph of g.

Find the y-coordinate of every relative min, relative max, and inflection point. Then, plot those points.
Next, find the y-intercept by finding $b=g(0)$, then plot the y-intercept $(0, b)$.
If it's feasible, find the x-intercept by solving $g(a)=0$ for a, then plot the x-intercept $(a, 0)$.
Finally, complete the curve sketch using the guidance of the third rows of the slope \& concavity tables of g.

[^0]EXAMPLE: Let $r(\theta)=3 \sin \theta+\cos \theta$, where $\theta \in[0,2 \pi)$.
(a) Identify the domain of r.
$\operatorname{Dom}(r)=\operatorname{Dom}(3 \sin \theta+\cos \theta) \cap[0,2 \pi)^{D \stackrel{M}{=} \cdot S}[\operatorname{Dom}(\sin \theta) \cap \operatorname{Dom}(\cos \theta)] \cap[0,2 \pi)^{D} \stackrel{\text { M. } 10}{=} \mathbb{R} \cap \mathbb{R} \cap[0,2 \pi)=[0,2 \pi)$
(b) Find all critical numbers of r which lie in the interior of its domain $\Longrightarrow \quad \operatorname{int}(\operatorname{Dom}(r))=\operatorname{int}([0,2 \pi))=(0,2 \pi)$
$r^{\prime}(\theta)=\frac{d}{d \theta}[3 \sin \theta+\cos \theta] \stackrel{D .2}{=} \frac{d}{d \theta}[3 \sin \theta]+\frac{d}{d \theta}[\cos \theta]=3 \cos \theta-\sin \theta$
$r^{\prime}(\theta) \stackrel{\text { set }}{=} 0 \Longrightarrow 3 \cos \theta-\sin \theta=0 \Longrightarrow \cos \theta\left(3-\frac{\sin \theta}{\cos \theta}\right)=\cos \theta(3-\tan \theta)=0 \Longrightarrow \cos \theta=0$ OR $\tan \theta=3$
$\cos \theta=0 \Longrightarrow \theta \in\left\{\cdots,-\frac{3 \pi}{2},-\frac{\pi}{2}, \frac{\pi}{2}, \frac{3 \pi}{2}, \cdots\right\} \cap[0,2 \pi)=\left\{\frac{\pi}{2}, \frac{3 \pi}{2}\right\}$
$\tan \theta=3 \Longrightarrow \theta=\arctan (3) \stackrel{\text { calc }}{\approx} 1.2490$ (radians). Now, since $\tan \theta>0$ and $\theta \in[0,2 \pi), \theta$ must lie in Quadrants I \& III.
Sure enough, 1.2490 (radians) $\in \mathrm{QI}=\left(0, \frac{\pi}{2}\right) \approx(0,1.57)$, but what is the corresponding angle in QIII??
Use reference angles : $\theta_{r}=1.2490 \in \mathrm{QI} \approx(0,1.57) \Longrightarrow \theta=\pi+1.2490 \approx 4.3906 \in \mathrm{QIII}=\left(\pi, \frac{3 \pi}{2}\right) \approx(3.14,4.71)$
Now, check whether each solution satisfies the original equation $r^{\prime}(\theta)=3 \cos \theta-\sin \theta=0$:
$r^{\prime}\left(\frac{\pi}{2}\right)=0-1=-1 \neq 0 \Longrightarrow$ discard $\theta=\frac{\pi}{2} \quad r^{\prime}\left(\frac{3 \pi}{2}\right)=0+1=1 \neq 0 \Longrightarrow \operatorname{discard} \theta=\frac{3 \pi}{2}$
$r^{\prime}(1.2490)=0.0001447 \approx 0 \Longrightarrow \theta \approx 1.2490$ is indeed a solution.
$r^{\prime}(4.3906)=-0.0001215 \approx 0 \Longrightarrow \theta \approx 4.3906$ is indeed a solution.
Thus, the critical numbers of r are $\theta \in\{1.2490,4.3906\}$
(c) Identify all relative minima, relative maxima as well as the interval(s) where r increases and decreases.

In order to identify all this, build the slope table for r :

θ	0	$\frac{\pi}{4} \approx 0.785$	1.2490	$\pi \approx 3.14$	4.3906	$\frac{3 \pi}{2} \approx 4.71$	$2 \pi \approx 6.28$
$r^{\prime}(\theta)$	$\# \#$	+	0	-	0	+	$\# \#$
slope	$\# \#$	$/$	-	\backslash	-	$/$	$\# \#$

Thus, interpreting the 'slope' row reveals: Rel. max (hill) at $\theta \approx 1.2490$ and rel. min (valley) at $\theta \approx 4.3906$
$\Longrightarrow \quad r$ increases over $(0,1.2490) \cup(4.3906,2 \pi), r$ decreases over $(1.2490,4.3906)$
(d) Find all CFIP's (candidates for inflection point) of r which lie in the interior of its domain.
$r^{\prime \prime}(\theta)=\frac{d}{d \theta}[3 \cos \theta-\sin \theta] \stackrel{D_{2} .2}{=} \frac{d}{d \theta}[3 \cos \theta]-\frac{d}{d \theta}[\sin \theta]=-3 \sin \theta-\cos \theta$
$r^{\prime \prime}(\theta) \stackrel{\text { set }}{=} 0 \Longrightarrow-3 \sin \theta-\cos \theta=0 \Longrightarrow-\cos \theta\left(3 \frac{\sin \theta}{\cos \theta}+1\right)=0 \Longrightarrow \cos \theta=0$ OR $\tan \theta=-\frac{1}{3}$
$\tan \theta=-\frac{1}{3} \Longrightarrow \theta=\arctan \left(-\frac{1}{3}\right) \stackrel{\text { calc }}{\approx}-0.32175$. Now, since $\tan \theta<0$ and $\theta \in[0,2 \pi), \theta$ must lie in Quadrants II \& IV.
But $-0.32175 \notin[0,2 \pi)$, so find the coterminal angle: $\theta=-0.32175+2 \pi \approx 5.96144 \in \operatorname{QIV}=\left(\frac{3 \pi}{2}, 2 \pi\right) \approx(4.71,6.28)$
As for QII, use reference angles : $\theta_{r}=0.32175 \in \mathrm{QI} \approx(0,1.57) \Longrightarrow \theta=\pi-\theta_{r} \approx 2.81984 \in \mathrm{QII}=\left(\frac{\pi}{2}, \pi\right) \approx(1.57,3.14)$
Now, check whether each solution satisfies the original equation $r^{\prime \prime}(\theta)=-3 \sin \theta-\cos \theta=0$:
$r^{\prime \prime}\left(\frac{\pi}{2}\right)=-3 \neq 0$ and $r^{\prime \prime}\left(\frac{3 \pi}{2}\right)=3 \neq 0$, so discard $\theta=\frac{\pi}{2}$ and $\theta=\frac{3 \pi}{2}$
$r^{\prime \prime}(2.81984)=-0.00000664 \approx 0$ and $r^{\prime \prime}(5.96144)=-0.00001659 \approx 0$
Thus, the CFIP's of r are $\theta \in\{2.81984,5.96144\}$
(e) Identify all inflection points as well as the interval(s) where r is concave up and concave down.

In order to identify all this, build the concavity table for r :

θ	0	$\frac{\pi}{2} \approx 1.57$	2.81984	$\pi \approx 3.14$	5.96144	6	$2 \pi \approx 6.28$		
$r^{\prime \prime}(\theta)$	$\# \#$	-	0	+	0	-	$\# \#$		
concavity	$\# \#$	\cap	$*$	\cup	$*$	\cap	$\# \#$	\Longrightarrow	r has inflection points at $\theta \in\{2.81984,5.96144\}$
---:									

$\Longrightarrow r$ is concave up (smiles) over $(2.81984,5.96144), r$ is concave down (frowns) over $(0,2.81984) \cup(5.96144,2 \pi)$
(f) Sketch the graph of r.
(See the part (f) of the previous example)

EXAMPLE: Let $f(x)=2 x+\arccos x$
(a) Identify the domain of f.

$$
\operatorname{Dom}(f)^{D \stackrel{M . S}{=}} \operatorname{Dom}(2 x) \cap \operatorname{Dom}(\arccos x)^{\stackrel{D M .1}{D M . V}} \mathbb{R} \cap \operatorname{Rng}(\cos x)^{R G .4} \mathbb{=} \mathbb{R} \cap[-1,1]=[-1,1]
$$

(b) Find all critical numbers of f which lie in the interior of its domain $\Longrightarrow \quad \operatorname{int}(\operatorname{Dom}(f))=\operatorname{int}([-1,1])=(-1,1)$ $f^{\prime}(x)=\frac{d}{d x}[2 x+\arccos x] \stackrel{D .2}{=} \frac{d}{d x}[2 x]+\frac{d}{d x}[\arccos x] \stackrel{D .5}{=} 2+\frac{d}{d x}[\arccos x] \stackrel{D .17}{=} 2-\frac{1}{\sqrt{1-x^{2}}}$
$f^{\prime}(x) \stackrel{\text { set }}{=} 0 \Longrightarrow 2-\frac{1}{\sqrt{1-x^{2}}}=0 \Longrightarrow 2 \sqrt{1-x^{2}}-1=0 \Longrightarrow \sqrt{1-x^{2}}=\frac{1}{2} \Longrightarrow 1-x^{2}=\frac{1}{4} \Longrightarrow x= \pm \frac{\sqrt{3}}{2} \approx \pm 0.8660$
Now, consider where $f^{\prime}(x)$ is undefined yet $f(x)$ is defined: $f^{\prime}(x)$ is undefined $\Longrightarrow \sqrt{1-x^{2}}=0 \Longrightarrow x= \pm 1$
$f(1)=2(1)+\arccos 1=2+0=2, \quad f(-1)=2(-1)+\arccos (-1)=-2+\pi=\pi-2 \Longrightarrow$ both $f(1), f(-1)$ are defined.
But $x= \pm 1$ lie on the boundary of the domain of f, so discard these two values.
Thus, the critical numbers of f are $x \in\left\{-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}\right\}$
(c) Identify all relative minima, relative maxima as well as the interval(s) where f increases and decreases.

In order to identify all this, build the slope table for f :

x	-1	-0.9	-0.8660	0	0.8660	0.9	1
$f^{\prime}(x)$	$\# \#$	-	0	+	0	-	$\# \#$
slope	$\# \#$	\backslash	-	$/$	-	\backslash	$\# \#$

Thus, interpreting the 'slope' row reveals: f has relative min (valley) at $x=-0.8660, f$ has relative max (hill) at $x=0.8660$
Relative extrema separate intervals of increasing/decreasing:
f increases over $(-0.8660,0.8660), f$ decreases over $[-1,-0.8660) \cup(0.8660,1]$
(d) Find all CFIP's (candidates for inflection point) of f which lie in the interior of its domain.
$f^{\prime \prime}(x)=\frac{d}{d x}\left[2-\frac{1}{\sqrt{1-x^{2}}}\right]=0+\frac{d}{d x}\left[-\left(1-x^{2}\right)^{-1 / 2}\right] \stackrel{D .22}{=} \frac{1}{2}\left(1-x^{2}\right)^{-3 / 2}(-2 x)=-\frac{x}{\sqrt{\left(1-x^{2}\right)^{3}}}$
$f^{\prime \prime}(x) \stackrel{\text { set }}{=} 0 \Longrightarrow-\frac{x}{\sqrt{\left(1-x^{2}\right)^{3}}}=0 \Longrightarrow x=0$
Now, consider where $f^{\prime \prime}(x)$ is undefined: $f^{\prime \prime}(x)$ is undefined $\Longrightarrow \sqrt{\left(1-x^{2}\right)^{3}}=0 \Longrightarrow x= \pm 1$
But $x= \pm 1$ lie on the boundary of the domain of f, so discard these two values.
Thus, the CFIP's of f are $x \in\{0\}$
(e) Identify all inflection points as well as the interval(s) where f is concave up and concave down.

In order to identify all this, build the concavity table for f :

x	-1	$-\frac{1}{2}$	0	$\frac{1}{2}$	1
$f^{\prime \prime}(x)$	$\# \#$	+	0	-	$\# \#$
concavity	$\# \#$	\cup	$*$	\cap	$\# \#$

Thus, interpreting the 'concavity' row reveals: f has inflection point at $x=0$
Inflection points separate intervals of concave up/concave down:
f is concave up (smiles) over $[-1,0$), f is concave down (frowns) over $(0,1]$
(f) Sketch the graph of f.

Find the y-coordinate of every relative min, relative max, and inflection point. Then, plot those points.
Next, find the y-intercept by finding $b=f(0)$, then plot the y-intercept $(0, b)$.
If it's feasible, find the x-intercept by solving $f(a)=0$ for a, then plot the x-intercept $(a, 0)$.
Finally, complete the curve sketch using the guidance of the third rows of the slope \& concavity tables of f.

[^0]: (C)2012 Josh Engwer - Revised October 27, 2012

