DEFINITION OF THE INTEGRAL:

- A function f is integrable on interval $[a, b]$ if: $(i)[a, b] \subseteq \operatorname{Dom}(f) \operatorname{AND}(i i) \int_{a}^{b} f(x) d x:=\lim _{\|\mathcal{P}\| \rightarrow 0} \sum_{k=1}^{N} f\left(x_{k}^{*}\right) \Delta x_{k}$ exists.
- The definite integral of $f(x)$ is denoted $\int_{a}^{b} f(x) d x$ and is read: "The integral from a to b of $f(x)$ with respect to x "
- THEOREM: f is continuous on interval $[a, b] \Longrightarrow f$ is integrable on interval $[a, b]$.
- Geometrically, if $f(x) \geq 0 \forall x \in[a, b]$, then $\int_{a}^{b} f(x) d x$ is the total area under the curve f bounded by the x-axis. Otherwise, if $f(x) \leq 0$ for some $x \in[a, b]$, then $\int_{a}^{b} f(x) d x$ is the net area under the curve f bounded by the x-axis.

ONE-DIMENSIONAL MOTION OF A PARTICLE:

- Given velocity function $v(t)$, the total distance traveled from time $t=t_{0}$ to $t=t_{1}$ is $\int_{t_{0}}^{t_{1}}|v(t)| d t$.
- Given velocity function $v(t)$, the net displacement traveled from time $t=t_{0}$ to $t=t_{1}$ is $\int_{t_{0}}^{t_{1}} v(t) d t$.

FIRST FUNDAMENTAL THEOREM OF CALCULUS ($1^{\text {st }}$ F-T-C):

- (FTC.1) Let $f \in C[a, b]$ and $F^{\prime}(x)=f(x) \forall x \in[a, b]$. Then, $\int_{a}^{b} f(x) d x=[F(x)]_{x=a}^{x=b}=F(b)-F(a)$.
- Let f be a continuous function on interval $[a, b]$ and F be an antiderivative of f. Then, $\int_{a}^{b} f(x) d x=F(b)-F(a)$.
- This theorem is "fundamental" to calculus as it makes a connection between differentiation \& integration.
- The beauty of this theorem is that it allows computation of definite integrals without using Riemann sums.

SECOND FUNDAMENTAL THEOREM OF CALCULUS (${ }^{n d}$ F-T-C):

- (FTC.2) Let $f \in C[a, b]$. Then, $\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x) \quad \forall x \in[a, b]$
- (Generalisation) Let $f, g^{\prime} \in C[a, b]$. Then, $\frac{d}{d x} \int_{a}^{g(x)} f(t) d t=f[g(x)] g^{\prime}(x)$
- The beauty of this theorem is that it works even when the integral is nonelementary.

BASIC DEFINITE INTEGRAL RULES: Here, $-\infty<a<c<b<\infty$ and f, g are integrable.

- (DINT.0) (Degenerate Interval) $\int_{a}^{a} f(x) d x=0$
- (DINT.1) (Flip Interval Rule) $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$
- (DINT.2) (Lump Interval Rule) $\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x=\int_{a}^{b} f(x) d x$
- (DINT.3) (Multiple Rule) $\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x \quad$ (where $k \in \mathbb{R}$)
- (DINT.4) (Sum/Diff Rule) $\int_{a}^{b}[f(x) \pm g(x)] d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x$
- (DINT.5) (Dominance Rule) Suppose $f(x) \leq g(x)$ for $x \in[a, b]$. Then, $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$.
- (DINT.6) (Even Function) f is even $\Longrightarrow \int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x \quad[f$ is even $\Longleftrightarrow f(-x)=f(x)]$
- (DINT.7) (Odd Function) f is odd $\Longrightarrow \int_{-a}^{a} f(x) d x=0 \quad[f$ is odd $\Longleftrightarrow f(-x)=-f(x)]$

EXAMPLE: Evaluate $\int_{0}^{\pi / 4} \sin \theta d \theta$.
$\int_{0}^{\pi / 4} \sin \theta d \theta \stackrel{I N T .8}{=}[-\cos \theta+C]_{\theta=0}^{\theta=\pi / 4} \stackrel{F T C .1}{=}[-\cos (\pi / 4)+C]-[-\cos (0)+C]=-\frac{1}{\sqrt{2}}+1+(C-C)=1-\frac{1}{\sqrt{2}} \approx 0.2929$
Notice that the constant of integration C cancels out when using the F-T-C.
So going forward, C will never to added to anti-derivatives in definite integrals.
EXAMPLE: Evaluate $\int_{0}^{1}\left(x^{4}-2 x^{3}+1\right) d x$.

$$
\begin{gathered}
\int_{0}^{1}\left(x^{4}-2 x^{3}+1\right) d x \stackrel{D I N T .4}{=} \int_{0}^{1} x^{4} d x-\int_{0}^{1} 2 x^{3} d x+\int_{0}^{1} d x \stackrel{I N T \cdot 4}{=}\left[\frac{1}{5} x^{5}\right]_{x=0}^{x=1}-\left[\frac{1}{2} x^{4}\right]_{x=0}^{x=1}+[x]_{x=0}^{x=1} \\
\text { FTC. }\left[\frac{1}{5}(1)^{5}-\frac{1}{5}(0)^{5}\right]-\left[\frac{1}{2}(1)^{4}-\frac{1}{2}(0)^{4}\right]+[(1)-(0)]=\frac{7}{10}
\end{gathered}
$$

EXAMPLE: Find the area under the curve $f(x)=|x|$ bounded by the x-axis and the vertical lines $x=-5 \& x=8$.
Recall that $|x|$ is a piecewise function: $|x|:= \begin{cases}x & , \text { if } x \geq 0 \\ -x & , \text { if } x<0\end{cases}$

$$
\begin{gathered}
\Longrightarrow \text { Area }=\int_{-5}^{8} f(x) d x=\int_{-5}^{8}|x| d x \stackrel{D I N T \cdot 2}{=} \int_{-5}^{0}-x d x+\int_{0}^{8} x d x \stackrel{I N T \cdot 4}{=}\left[-\frac{1}{2} x^{2}\right]_{x=-5}^{x=0}+\left[\frac{1}{2} x^{2}\right]_{x=0}^{x=8} \\
\stackrel{F T C \cdot 1}{=}\left[-\frac{1}{2}(0)^{2}-\left(-\frac{1}{2}(-5)^{2}\right)\right]+\left[\frac{1}{2}(8)^{2}-\frac{1}{2}(0)^{2}\right]=\frac{89}{2}
\end{gathered}
$$

EXAMPLE: Find $\frac{d}{d x} \int_{x}^{4} t^{3} d t$.
Since it's possible to find the anti-derivative of t^{3}, there are two approaches one can take:
(Method 1: Using the $1^{s t}$ F-T-C) $\frac{d}{d x} \int_{x}^{4} t^{3} d t \stackrel{I N T .4}{=} \frac{d}{d x}\left[\frac{1}{4} t^{4}\right]_{t=x}^{t=4} \stackrel{F T C .1}{=} \frac{d}{d x}\left[\frac{1}{4}(4)^{4}-\frac{1}{4}(x)^{4}\right]=\frac{d}{d x}\left[64-\frac{1}{4} x^{4}\right]=-x^{3}$
(Method 2: Using the $2^{n d}$ F-T-C) $\frac{d}{d x} \int_{x}^{4} t^{3} d t \stackrel{D I N T .1}{=}-\frac{d}{d x} \int_{4}^{x} t^{3} d t \stackrel{F T C .2}{=}-x^{3}$
EXAMPLE: Find $\frac{d}{d x} \int_{1}^{x^{2}} 8 t^{7} d t$.
Since it's possible to find the anti-derivative of $8 t^{7}$, there are two approaches one can take:
(Method 1: Using the $1^{s t}$ F-T-C) $\frac{d}{d x} \int_{1}^{x^{2}} 8 t^{7} d t \stackrel{I N T .4}{=} \frac{d}{d x}\left[t^{8}\right]_{t=1}^{t=x^{2}} \stackrel{F T C .1}{=} \frac{d}{d x}\left[\left(x^{2}\right)^{8}-(1)^{8}\right]=\frac{d}{d x}\left[x^{16}-1\right]=16 x^{15}$
(Method 2: Using the $2^{n d}$ F-T-C) $\frac{d}{d x} \int_{1}^{x^{2}} 8 t^{7} d t \stackrel{F T C .2}{=} 8\left(x^{2}\right)^{7} \frac{d}{d x}\left[x^{2}\right]=\left(8 x^{14}\right)(2 x)=16 x^{15}$
EXAMPLE: Find $\frac{d}{d w} \int_{2}^{w} \sin \left(u^{2}\right) d u$.
Since the integral is nonelementary, it's not possible to find its exact antiderivative, hence use the $2^{\text {nd }}$ F-T-C:
$\frac{d}{d w} \int_{2}^{w} \sin \left(u^{2}\right) d u \stackrel{F T C \cdot 2}{=} \sin \left(w^{2}\right)$
EXAMPLE: Use the Dominance Rule to determine an upper bound of $\int_{0}^{\pi / 2} 2 x \sin x d x$.
The integral requires a more sophisticated integration technique to be learned in Calculus II.
Recall that Rng $(\sin x)=[-1,1] \Longrightarrow \sin x \leq 1 \Longrightarrow 2 x \sin x \leq 2 x$
$\xrightarrow{D I N T .5} \int_{0}^{\pi / 2} 2 x \sin x d x \leq \int_{0}^{\pi / 2} 2 x d x \stackrel{I N T .4}{=}\left[x^{2}\right]_{x=0}^{x=\pi / 2} \stackrel{F T C .1}{=}\left(\frac{\pi}{2}\right)^{2}-(0)^{2}=\frac{\pi^{2}}{4}$
Thus, $\int_{0}^{\pi / 2} 2 x \sin x d x \leq \frac{\pi^{2}}{4} \approx 2.4674$.
NOTE: The exact value of the integral is $\int_{0}^{\pi / 2} 2 x \sin x d x=2$, so the upper bound is a reasonably tight estimate.

