RIEMANN SUMS

NON-UNIFORM (GENERAL) RIEMANN SUMS:

- There are to be N rectangles of varying widths spanning the closed interval $[a, b]$ on the x-axis.
- Partition of interval $[a, b]$ is denoted $\mathcal{P}:=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{N-1}, x_{N}\right\}$, where $a=x_{0}<x_{1}<x_{2}<\cdots<x_{N-1}<x_{N}=b$
- Tags of interval $[a, b]$ are denoted $\mathcal{T}:=\left\{x_{1}^{*}, x_{2}^{*}, \ldots, x_{N-1}^{*}, x_{N}^{*}\right\}$, where each $x_{k}^{*} \in\left[x_{k-1}, x_{k}\right]$
- The width of the $k^{t h}$ rectangle is denoted by $\Delta x_{k}:=x_{k}-x_{k-1}$.
- The norm of the partition \mathcal{P} is the largest rectangle width : $\|\mathcal{P}\|:=\max \left\{\Delta x_{k}: k=1,2,3, \ldots, N-1, N\right\}$
- The Riemann sum of the function f over interval $[a, b]$ using N rectangles is defined by $\mathcal{S}_{(\mathcal{P}, \mathcal{T})}(f):=\sum_{k=1}^{N} f\left(x_{k}^{*}\right) \Delta x_{k}$.

In the above illustrated example:

- \# Rectangles : $N=3$
- Partition: $\mathcal{P}=\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\}$
- Tags : $\mathcal{T}=\left\{x_{1}^{*}, x_{2}^{*}, x_{3}^{*}\right\}$
- Norm of Partition : $\|\mathcal{P}\|=\Delta x_{3}:=x_{3}-x_{2}$
- Riemann Sum : $\mathcal{S}_{(\mathcal{P}, \mathcal{T})}(f)=\sum_{k=1}^{N} f\left(x_{k}^{*}\right) \Delta x_{k}=f\left(x_{1}^{*}\right) \Delta x_{1}+f\left(x_{2}^{*}\right) \Delta x_{2}+f\left(x_{3}^{*}\right) \Delta x_{3}$

UNIFORM (REGULAR) RIEMANN SUMS:

- There are to be N rectangles of equal width spanning the closed interval $[a, b]$ on the x-axis.
- Hence, the width of each rectangle is the same and is denoted by $\Delta x:=\frac{b-a}{N}$.
- Hence, the partition of interval $[a, b]$ is $\mathcal{P}:=\{a, a+\Delta x, a+2 \Delta x, a+3 \Delta x, \ldots, a+(N-1) \Delta x, a+N \Delta x=b\}$
- Tags of interval $[a, b]$ are denoted $\mathcal{T}:=\left\{x_{1}^{*}, x_{2}^{*}, \ldots, x_{N-1}^{*}, x_{N}^{*}\right\}$, where each $x_{k}^{*} \in\left[x_{k-1}, x_{k}\right]$ is chosen the same way.
- The norm of the partition \mathcal{P} is $\|\mathcal{P}\|:=\Delta x=\frac{b-a}{N}$
- The Riemann sum of the function f over interval $[a, b]$ using N rectangles is defined by $\mathcal{S}_{\mathcal{T}, N}(f):=\sum_{k=1}^{N} f\left(x_{k}^{*}\right) \Delta x$.

The five most common uniform Riemann sums are illustrated in the following two examples.

EXAMPLE: Let $f(x)=1+x^{2}$. Illustrate \& compute the five basic uniform Riemann sums using 8 rectangles on $[-2,2]$.

EXAMPLE: Let $g(t)=-5 \sin (4 \pi t)$. Illustrate \& compute the five basic uniform Riemann sums using 4 rectangles on $\left[0, \frac{\pi}{2}\right]$.

Left-Endpoint Riemann Sum:
$\mathcal{P}=\left\{0, \frac{\pi}{8}, \frac{\pi}{4}, \frac{3 \pi}{8}, \frac{\pi}{2}\right\}$
Rectangles : $N=4$; Width : $\Delta t=\frac{\pi}{8}$
Tags : $t_{k}^{*}=t_{k-1}$
$\mathcal{T}=\left\{0, \frac{\pi}{8}, \frac{\pi}{4}, \frac{3 \pi}{8}\right\}$
$\mathcal{S}_{l e f t, N}(g)=\sum_{k=1}^{N} g\left(t_{k}^{*}\right) \Delta t \approx 1.218$

Right-Endpoint Riemann Sum:
$\mathcal{P}=\left\{0, \frac{\pi}{8}, \frac{\pi}{4}, \frac{3 \pi}{8}, \frac{\pi}{2}\right\}$
Rectangles : $N=4$; Width : $\Delta t=\frac{\pi}{8}$
Tags : $t_{k}^{*}=t_{k}$
$\mathcal{T}=\left\{\frac{\pi}{8}, \frac{\pi}{4}, \frac{3 \pi}{8}, \frac{\pi}{2}\right\}$
$\mathcal{S}_{\text {right }, N}(g)=\sum_{k=1}^{N} g\left(t_{k}^{*}\right) \Delta t \approx-0.308$

Mid-point Riemann Sum:
$\mathcal{P}=\left\{0, \frac{\pi}{8}, \frac{\pi}{4}, \frac{3 \pi}{8}, \frac{\pi}{2}\right\}$
Rectangles : $N=4$; Width : $\Delta t=\frac{\pi}{8}$
Tags : $t_{k}^{*}=\frac{t_{k-1}+t_{k}}{2}$
$\mathcal{T}=\left\{\frac{\pi}{16}, \frac{3 \pi}{16}, \frac{5 \pi}{16}, \frac{7 \pi}{16}\right\}$
$\mathcal{S}_{\text {mid }, N}(g)=\sum_{k=1}^{N} g\left(t_{k}^{*}\right) \Delta t \approx-0.582$

Min-value Riemann Sum:

$\mathcal{P}=\left\{0, \frac{\pi}{8}, \frac{\pi}{4}, \frac{3 \pi}{8}, \frac{\pi}{2}\right\}$
Rectangles : $N=4$; Width : $\Delta t=\frac{\pi}{8}$
$t_{k}^{*}=\arg \min \left\{g(t): t \in\left[t_{k-1}, t_{k}\right]\right\}$
$\mathcal{T}=\left\{\frac{1}{8}, \frac{5}{8}, \frac{9}{8}, \frac{3 \pi}{8}\right\}$

Lower Sum:

$\mathcal{L S}_{N}(g)=\sum_{k=1}^{N} g\left(t_{k}^{*}\right) \Delta t \approx-7.433$

Max-value Riemann Sum:

$\mathcal{P}=\left\{0, \frac{\pi}{8}, \frac{\pi}{4}, \frac{3 \pi}{8}, \frac{\pi}{2}\right\}$
Rectangles : $N=4$; Width : $\Delta t=\frac{\pi}{8}$
$t_{k}^{*}=\arg \max \left\{g(t): t \in\left[t_{k-1}, t_{k}\right]\right\}$
$\mathcal{T}=\left\{\frac{3}{8}, \frac{\pi}{8}, \frac{7}{8}, \frac{11}{8}\right\}$

Upper Sum:

$\mathcal{U S}_{N}(g)=\sum_{k=1}^{N} g\left(t_{k}^{*}\right) \Delta t \approx 7.806$

