DISTANCE BETWEEN TWO POINTS $\left(x_{0}, y_{0}\right)$ AND $\left(x_{1}, y_{1}\right): \sqrt{\left(x_{1}-x_{0}\right)^{2}+\left(y_{1}-y_{0}\right)^{2}}$
EQUATION OF A (GENERAL) LINE:

- Assume line contains points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)$, \mathbf{y}-intercept $(0, b)$, and x-intercept $(a, 0)$
- Then the slope is $m=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}$
- Point-slope form : $y-y_{0}=m\left(x-x_{0}\right)$
- Slope-intercept form : $y=m x+b$

EQUATION OF A HORIZONTAL LINE: $y=k$ (The slope of a horizontal line is zero)
EQUATION OF A VERTICAL LINE: $\quad x=h \quad$ (The slope of a vertical line DNE [Does Not Exist])

PARALLEL LINES:

- Two vertical lines are parallel.
- Two non-vertical lines ℓ_{1}, ℓ_{2} are parallel $\Longleftrightarrow \ell_{1} \| \ell_{2} \Longleftrightarrow$ their slopes $m_{1}=m_{2}$

PERPENDICULAR LINES: slanted line \Longleftrightarrow line that's neither horizontal nor vertical

- Horizontal lines are perpendicular to vertical lines.
- Two slanted lines ℓ_{1}, ℓ_{2} are perpendicular $\Longleftrightarrow \ell_{1} \perp \ell_{2} \Longleftrightarrow$ their slopes $m_{1} m_{2}=-1$

INTERSECTION OF TWO LINES:

- Finding intersection of 2 lines $\ell_{1}, \ell_{2} \Longleftrightarrow$ solving a system of 2 linear equations
- 3 cases :
(i) $\ell_{1} \| \ell_{2} \Longleftrightarrow$ no solution (ii) ℓ_{1}, ℓ_{2} coincident \Longleftrightarrow infinitely many solutions (iii) ℓ_{1}, ℓ_{2} intersect \Longleftrightarrow one solution
- Solve system of 2 linear equations by using substitution : Solve one equation for either variable, then plug expression into same variable of other equation, then solve for other variable.

EXAMPLE: Suppose a line contains points $(1,8)$ and $(4,-2)$. Determine its equation in slope-intercept form.
Let points $\left(x_{0}, y_{0}\right)=(1,8)$ and $\left(x_{1}, y_{1}\right)=(4,-2)$. Then, slope $m=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}=\frac{(-2)-(8)}{(4)-(1)}=-\frac{10}{3}$
Since we do not immediately recognize the y-intercept of this line, plug the values x_{0}, y_{0}, m into the point-slope form :

$$
y-y_{0}=m\left(x-x_{0}\right) \Longrightarrow y-8=-\frac{10}{3}(x-1) \Longrightarrow y=8-\frac{10}{3} x+\frac{10}{3} \Longrightarrow y=-\frac{10}{3} x+\frac{34}{3}
$$

EXAMPLE: Suppose a line ℓ has x-intercept -10 and y-intercept 5 . Determine its equation in slope-intercept form.
First, "line ℓ has x-intercept $-10 " \Longleftrightarrow "$ line ℓ contains point $(-10,0) " \Longleftrightarrow$ point $(-10,0) \in \ell$
Next, "line ℓ has y-intercept $5 " \Longleftrightarrow "$ line ℓ contains point $(0,5) " \Longleftrightarrow \operatorname{point}(0,5) \in \ell$
Thus, let points $\left(x_{0}, y_{0}\right)=(-10,0)$ and $\left(x_{1}, y_{1}\right)=(0,5)$. Then, slope $m=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}=\frac{(5)-(0)}{(0)-(-10)}=\frac{1}{2}$
Since we were given the y -intercept of line $\ell(b=5)$, plug the values m, b into the slope-intercept form :
$\ell: y=m x+b \Longrightarrow \ell: y=\frac{1}{2} x+5$
EXAMPLE: Let line ℓ_{1} contain point $(-3,-12)$ and be perpendicular to $\ell_{2}:-2 x+y=4$. Find slope-intercept form of ℓ_{1}.
First, $\ell_{1} \perp \ell_{2} \Longleftrightarrow$ slopes $m_{1} m_{2}=-1$. Now, find slope m_{2} of line $\ell_{2}:-2 x+y=4 \Longrightarrow y=2 x+4 \Longrightarrow m_{2}=2$
Hence, $m_{1} m_{2}=-1 \Longrightarrow m_{1}(2)=-1 \Longrightarrow m_{1}=-\frac{1}{2} \Longrightarrow$ slope of line ℓ_{1} is $m_{1}=-\frac{1}{2}$
Let $\left(x_{0}, y_{0}\right)=(-3,-12) \in \ell_{1}$. Then, plug the values x_{0}, y_{0}, m_{1} into the point-slope form :
$\ell_{1}: y-y_{0}=m_{1}\left(x-x_{0}\right) \Longrightarrow \ell_{1}: y-(-12)=-\frac{1}{2}(x-(-3)) \Longrightarrow \ell_{1}: y=-12-\frac{1}{2} x-\frac{3}{2} \Longrightarrow \ell_{1}: y=-\frac{1}{2} x-\frac{27}{2}$

[^0]- Assume circle has center (h, k) and radius $r>0$
- Standard form : $(x-h)^{2}+(y-k)^{2}=r^{2}$
- Complete the square of $x^{2}+b x\left(\right.$ where $b>0$) by adding term $\left(\frac{b}{2}\right)^{2} \Longrightarrow x^{2}+b x+\left(\frac{b}{2}\right)^{2}=\left(x+\frac{b}{2}\right)^{2}$
- Complete the square of $x^{2}-b x($ where $b>0)$ by adding term $\left(\frac{b}{2}\right)^{2} \Longrightarrow x^{2}-b x+\left(\frac{b}{2}\right)^{2}=\left(x-\frac{b}{2}\right)^{2}$

EXAMPLE: Find the center $\&$ radius of the circle $x^{2}-2 x+y^{2}+\sqrt{5} y-10=0$
The main task is to rewrite equation $x^{2}-2 x+y^{2}+\sqrt{5} y-10=0$ in standard form $(x-h)^{2}+(y-k)^{2}=r^{2}$
First, move the constant -10 to the RHS of equation : $x^{2}-2 x+y^{2}+\sqrt{5} y=10$
Complete the square in $x: x^{2}-2 x+\left(\frac{-2}{2}\right)^{2}=x^{2}-2 x+1=(x-1)^{2}$
Complete the square in $y: y^{2}+\sqrt{5} y+\left(\frac{\sqrt{5}}{2}\right)^{2}=y^{2}+\sqrt{5} y+\frac{5}{4}=\left(y+\frac{\sqrt{5}}{2}\right)^{2}$
Hence, we have $x^{2}-2 x+[1-1]+y^{2}+\sqrt{5} y+\left[\frac{5}{4}-\frac{5}{4}\right]=10 \Longrightarrow\left(x^{2}-2 x+1\right)+\left(y^{2}+\sqrt{5} y+\frac{5}{4}\right)-1-\frac{5}{4}=10$
$\Longrightarrow(x-1)^{2}+\left(y+\frac{\sqrt{5}}{2}\right)^{2}=10+1+\frac{5}{4} \Longrightarrow(x-1)^{2}+\left(y+\frac{\sqrt{5}}{2}\right)^{2}=\frac{49}{4} \Longrightarrow(x-1)^{2}+\left(y+\frac{\sqrt{5}}{2}\right)^{2}=\left(\frac{7}{2}\right)^{2}$
$\Longrightarrow(x-1)^{2}+\left[y-\left(-\frac{\sqrt{5}}{2}\right)\right]^{2}=\left(\frac{7}{2}\right)^{2}$, which is in standard form.
Therefore, circle has its center at point $\left(1,-\frac{\sqrt{5}}{2}\right)$ and a radius of $\frac{7}{2}$
EXAMPLE: Find the center \& radius of the circle $2 x^{2}-12 x+2 y^{2}+8 y-24=0$
The main task is to rewrite equation $2 x^{2}-12 x+2 y^{2}+8 y-24=0$ in standard form $(x-h)^{2}+(y-k)^{2}=r^{2}$
Notice if the LHS of standard form is expanded, we get $\left(x^{2}-2 h x+h^{2}\right)+\left(y^{2}-2 k y+k^{2}\right)=r^{2}$
Moreover, observe that the x^{2} and y^{2} terms of standard form have coefficient one,
so in our given equation, the x^{2} and y^{2} terms must also have coefficient one.
Hence, divide both sides of equation by $2: 2 x^{2}-12 x+2 y^{2}+8 y-24=0 \Longrightarrow x^{2}-6 x+y^{2}+4 y-12=0$
Now, move the constant -12 to the RHS of equation : $x^{2}-6 x+y^{2}+4 y=12$
Complete the square in $x: x^{2}-6 x+\left(\frac{-6}{2}\right)^{2}=x^{2}-6 x+9=(x-3)^{2}$
Complete the square in $y: y^{2}+4 y+\left(\frac{4}{2}\right)^{2}=y^{2}+4 y+4=(y+2)^{2}$
Hence, we have $x^{2}-6 x+[9-9]+y^{2}+4 y+[4-4]=12 \Longrightarrow\left(x^{2}-6 x+9\right)+\left(y^{2}+4 y+4\right)-9-4=12$
$\Longrightarrow(x-3)^{2}+(y+2)^{2}=12+9+4 \Longrightarrow(x-3)^{2}+(y+2)^{2}=25$
$\Longrightarrow(x-3)^{2}+[y-(-2)]^{2}=5^{2}$, which is in standard form.
Therefore, circle has its center at point $(3,-2)$ and a radius of 5

EXAMPLE: The equation $(x-1)^{2}+(y+10)^{2}=0$ does not describe a circle. Why not???
Well, this equation certainly looks like standard form $(x-h)^{2}+(y-k)^{2}=r^{2}$ with $h=1$ and $k=-10$,
but $r=0$, meaning the radius of this false circle is zero! We know circles must have positive radii (that is, $r>0$).
In fact, the graph of $(x-1)^{2}+(y+10)^{2}=0$ is a single point at $(h, k)=(1,-10)!!$

[^0]: © 2012 Josh Engwer - Revised September 2, 2012

