AREA BETWEEN TWO CURVES [SST 6.1]

- AREAS OF VERTICALLY SIMPLE (V-SIMPLE) REGIONS
- SETUP: Given $f, g \in C[a, b]$ s.t. $f(x) \geq g(x) \quad \forall x \in[a, b] \quad$ (i.e. curve f lies above curve g over $[a, b]$) Let R be the region bounded by curves $y=f(x), y=g(x)$, and the lines $x=a, x=b$.
TASK: Find the area of region R.
- Let partition $\mathcal{P}:=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{N-1}, x_{N}\right\} \subset[a, b]$ be arbitrary.
$-\quad$ Let tags $\mathcal{T}:=\left\{x_{1}^{*}, x_{2}^{*}, x_{3}^{*}, \ldots, x_{N-1}^{*}, x_{N}^{*}\right\} \subset[a, b]$ be arbitrary.
- Key element: V-Rectangle (V-Rect)

Width of $k^{t h}$ V-Rect $:=$ (Length of $k^{t h}$ subinterval) $=\Delta x_{k}$

Height	of	$k^{t h}$ V-Rect	$:=($ Top BC $)-($ Bottom BC $)$	$=f\left(x_{k}^{*}\right)-g\left(x_{k}^{*}\right)$
Area	of	$k^{t h}$ V-Rect	$:=($ Height $) \times($ Width $)$	$=\left[f\left(x_{k}^{*}\right)-g\left(x_{k}^{*}\right)\right] \Delta x_{k}$

- Riemann Sum: Area $(R) \approx A_{N}^{*}:=\sum_{k=1}^{N}\left[f\left(x_{k}^{*}\right)-g\left(x_{k}^{*}\right)\right] \Delta x_{k}$
- Integral: Area $(R)=\lim _{N \rightarrow \infty} A_{N}^{*}=\int_{\text {smallest x-coord. }}^{\text {largest x-coord. }}[f(x)-g(x)] d x=\int_{a}^{b}[f(x)-g(x)] d x$

- AREAS OF HORIZONTALLY SIMPLE (H-SIMPLE) REGIONS

- SETUP: Given $p, q \in C[c, d]$ s.t. $p(y) \geq q(y) \quad \forall y \in[c, d] \quad$ (i.e. curve p lies to the right of curve q over $[c, d]$)

Let R be the region bounded by curves $x=p(y), x=q(y)$, and the lines $y=c, y=d$.

- TASK: Find the area of region R.
- Let partition $\mathcal{P}:=\left\{y_{0}, y_{1}, y_{2}, \ldots, y_{N-1}, y_{N}\right\} \subset[c, d]$ be arbitrary.
$-\quad$ Let tags $\mathcal{T}:=\left\{y_{1}^{*}, y_{2}^{*}, y_{3}^{*}, \ldots, y_{N-1}^{*}, y_{N}^{*}\right\} \subset[c, d]$ be arbitrary.
- Key element: H-Rectangle (H-Rect)

Width	of	$k^{t h}$ H-Rect $:=$ (Length of $k^{t h}$ subinterval)	$=\Delta y_{k}$
Length	of	$k^{\text {th }}$ H-Rect	$:=$ (Right BC $)-($ Left BC $)$
Area	of	$k^{\text {th }}$ H-Rect	$:=($ Length $) \times($ Width $)$
		$=\left[p\left(y_{k}^{*}\right)-q\left(y_{k}^{*}\right)-q\left(y_{k}^{*}\right)\right] \Delta y_{k}$	

- Riemann Sum: $\operatorname{Area}(R) \approx A_{N}^{*}:=\sum_{k=1}^{N}\left[p\left(y_{k}^{*}\right)-q\left(y_{k}^{*}\right)\right] \Delta y_{k}$
- Integral: $\operatorname{Area}(R)=\lim _{N \rightarrow \infty} A_{N}^{*}=\int_{\text {smallest y-coord. }}^{\text {largest y-coord. }}[p(y)-q(y)] d y=\int_{c}^{d}[p(y)-q(y)] d y$

- PROCEDURE FOR CHOOSING APPROPRIATE KEY ELEMENT:

- STEP 1: Sketch region R
- STEP 2: Characterize region R :
* Label all boundary curves (BC's) of region R (both in terms of x and in terms of y)
* Label all boundary points (BP's), which are the intersection points of the BC's.
- STEP 3: Determine the simplicity of region R :

REGION	KEY ELEMENT
V-Simple	V-Rect
H-Simple	H-Rect
Both	Choose either V-Rect or H-Rect
Neither	Subdivide Region along a BP \& repeat STEP 3 for each subregion

EX 6.1.1: Let R be the region bounded by the curve $y=\ln x$, the x-axis, and lines $x=1, x=10$.
(a) Sketch \& characterize region R.
(b) Setup Riemann sum to estimate Area (R) using V-Rects.
(c) Setup integral to find $\operatorname{Area}(R)$ using V-Rects.
(d) Setup Riemann sum to estimate Area (R) using H-Rects.
(e) Setup integral to find $\operatorname{Area}(R)$ using H-Rects.

EX 6.1.2: Let R be the region bounded by curves $y=x^{2}, y=x$, the y-axis, and the line $x=2$.
(a) Sketch \& characterize region R.
(b) Setup integral to find $\operatorname{Area}(R)$ using V-Rects.
(c) Setup integral to find $\operatorname{Area}(R)$ using H-Rects.

EX 6.1.3: Let R be the region bounded by curves $y=x^{2}$ and $y=\sqrt[3]{x}$.
(a) Sketch \& characterize region R.
(b) Setup integral to find $\operatorname{Area}(R)$ using V-Rects.
(c) Setup integral to find $\operatorname{Area}(R)$ using H-Rects.

EX 6.1.4: Let R be the region bounded by the curve $x=1+\sqrt{y}$, the y-axis, and lines $y=1, y=4$.
(a) Sketch \& characterize region R.
(b) Setup integral to find $\operatorname{Area}(R)$ using V-Rects.
(c) Setup integral to find $\operatorname{Area}(R)$ using H-Rects.

EX 6.1.5: Let R be the region bounded by curves $x=2-y^{2}$ and $x=-y$.
(a) Sketch \& characterize region R.
(b) Setup integral to find Area (R) using V-Rects.
(c) Setup integral to find $\operatorname{Area}(R)$ using H-Rects.

EX 6.1.6: Let R be the region bounded by the curve $y=\sin (2 x)$, the x-axis and lines $x=\pi / 2, x=3 \pi / 2$.
(a) Sketch \& characterize region R.
(b) Setup integral to find $\operatorname{Area}(R)$ using V-Rects.

EX 6.1.7: Let R be the region bounded by the curve $y=\arctan x$ and lines $x=-1, x=\frac{1}{\sqrt{3}}, y=\pi$.
(a) Sketch \& characterize region R.
(b) Setup integral to find $\operatorname{Area}(R)$ using V-Rects.

