VOLUMES OF SOLIDS: CROSS SECTIONS, WASHERS, SHELLS [SST 6.2]

- VOLUMES OF SOLIDS WITH V-SIMPLE BASE \& CROSS SECTIONS PERPENDICULAR (\perp) TO X-AXIS:
- SETUP: Given $f, g \in C[a, b]$ s.t. $f(x) \geq g(x) \quad \forall x \in[a, b] \quad$ (i.e. curve f lies above curve g over $[a, b]$)

Let R be the region bounded by curves $y=f(x), y=g(x)$, and the lines $x=a, x=b$.
Let S be the solid with base R and cross sections \perp to the x-axis with area $A(x)$.

- TASK: Find the volume of the solid S with base R.
- Let partition $\mathcal{P}:=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{N-1}, x_{N}\right\} \subset[a, b]$ be arbitrary.

Let tags $\mathcal{T}:=\left\{x_{1}^{*}, x_{2}^{*}, x_{3}^{*}, \ldots, x_{N-1}^{*}, x_{N}^{*}\right\} \subset[a, b]$ be arbitrary.

- Key element: V-Slab (i.e. slab standing up)

Thickness of $k^{t h}$ V-Slab $:=$ (Length of $k^{t h}$ subinterval) $=\Delta x_{k}$
$\begin{array}{cccc}\text { Base Area } & \text { of } & k^{t h} \text { V-Slab } & :=\text { (Area of cross section) }\end{array}=A\left(x_{k}^{*}\right)$

- Riemann Sum: Volume $(S) \approx V_{N}^{*}:=\sum_{k=1}^{N} A\left(x_{k}^{*}\right) \Delta x_{k}$
- Integral: Volume $(S)=\lim _{N \rightarrow \infty} V_{N}^{*}=\int_{\text {smallest x-coord. }}^{\text {largest x-coord. }} A(x) d x=\int_{a}^{b} A(x) d x$
- VOLUMES OF SOLIDS WITH H-SIMPLE BASE \& CROSS SECTIONS PERPENDICULAR (\perp) TO Y-AXIS:
- SETUP: Given $p, q \in C[c, d]$ s.t. $p(y) \geq q(y) \quad \forall y \in[c, d] \quad$ (i.e. curve p lies to the right of curve q over $[c, d]$)

Let R be the region bounded by curves $x=p(y), x=q(y)$, and the lines $y=c, y=d$.
Let S be the solid with base R and cross sections \perp to the y-axis with area $A(y)$.

- TASK: Find the volume of the solid S with base R.
- Let partition $\mathcal{P}:=\left\{y_{0}, y_{1}, y_{2}, \ldots, y_{N-1}, y_{N}\right\} \subset[c, d]$ be arbitrary.

Let tags $\mathcal{T}:=\left\{y_{1}^{*}, y_{2}^{*}, y_{3}^{*}, \ldots, y_{N-1}^{*}, y_{N}^{*}\right\} \subset[c, d]$ be arbitrary.

- Key element: H-Slab (i.e. slab lying down)

Thickness	of	$k^{t h}$ H-Slab	$:=$ (Length of $k^{t h}$ subinterval)	$=\Delta y_{k}$
Base Area	of	$k^{t h}$ H-Slab $:=$ (Area of cross section)	$=A\left(y_{k}^{*}\right)$	
Volume	of	$k^{t h}$ H-Slab	$:=$ (Base Area $) \times($ Thickness $)$	$=A\left(y_{k}^{*}\right) \Delta y_{k}$

- Riemann Sum: Volume $(S) \approx V_{N}^{*}:=\sum_{k=1}^{N} A\left(y_{k}^{*}\right) \Delta y_{k}$
- Integral: Volume $(S)=\lim _{N \rightarrow \infty} V_{N}^{*}=\int_{\text {smallest y-coord. }}^{\text {largest y-coord. }} A(y) d y=\int_{c}^{d} A(y) d y$

- PROCEDURE FOR CHOOSING APPROPRIATE KEY ELEMENT:

- STEP 1: Sketch region R
- STEP 2: Characterize region R :
* Label all boundary curves (BC's) of region R (both in terms of x and in terms of y)
* Label all boundary points (BP's), which are the intersection points of the BC's.
- STEP 3: Determine the simplicity of region R :

REGION	KEY ELEMENT
V-Simple	V-Rect
H-Simple	H-Rect
Both	Choose either V-Rect or H-Rect
Neither	Subdivide Region along a BP \& repeat STEP 3 for each subregion

- VOLUMES OF SOLIDS BY REVOLVING A V-ALIGNED REGION ABOUT X-AXIS USING WASHERS:
- SETUP: Given $f, g \in C[a, b]$ s.t. $f(x) \geq g(x) \geq 0 \quad \forall x \in[a, b]$

Let R be the region bounded by curves $y=f(x), y=g(x)$, and the lines $x=a, x=b$.
Let S be the solid formed by revolving region R about the x-axis.

- TASK: Find the volume of the solid of revolution S about the x-axis using washers.
- Let partition $\mathcal{P}:=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{N-1}, x_{N}\right\} \subset[a, b]$

Let tags $\mathcal{T}:=\left\{x_{1}^{*}, x_{2}^{*}, x_{3}^{*}, \ldots, x_{N-1}^{*}, x_{N}^{*}\right\} \subset[a, b]$

- Key element: V-Washer (i.e. washer standing up)

Thickness of $k^{t h}$ V-Washer $:=$ (Length of $k^{t h}$ subinterval) $=\Delta x_{k}$
Outer Radius of $k^{t h}$ V-Washer $:=$ (Distance between farther BC \& axis of rev.) $=f\left(x_{k}^{*}\right)$
Inner Radius of $k^{t h}$ V-Washer $:=$ (Distance between closer BC \& axis of rev.) $=g\left(x_{k}^{*}\right)$
Volume of $k^{t h}$ V-Washer $:=\pi \times\left[(\text { Outer R. })^{2}-(\text { Inner R. })^{2}\right] \times($ Thick. $)=\pi\left(\left[f\left(x_{k}^{*}\right)\right]^{2}-\left[g\left(x_{k}^{*}\right)\right]^{2}\right) \Delta x_{k}$

- Riemann Sum: Volume $(S) \approx V_{N}^{*}:=\sum_{k=1}^{N} \pi\left(\left[f\left(x_{k}^{*}\right)\right]^{2}-\left[g\left(x_{k}^{*}\right)\right]^{2}\right) \Delta x_{k}$
- Integral: Volume $(S)=\lim _{N \rightarrow \infty} V_{N}^{*}=\int_{a}^{b} \pi\left([f(x)]^{2}-[g(x)]^{2}\right) d x$

- VOLUMES OF SOLIDS BY REVOLVING A H-ALIGNED REGION ABOUT Y-AXIS USING WASHERS:

- SETUP: Given $p, q \in C[c, d]$ s.t. $p(y) \geq q(y) \geq 0 \quad \forall y \in[c, d]$

Let R be the region bounded by curves $x=p(y), x=q(y)$, and the lines $y=c, y=d$.
Let S be the solid formed by revolving region R about the y-axis.

- TASK: Find the volume of the solid of revolution S about the y-axis using washers.
- Let partition $\mathcal{P}:=\left\{y_{0}, y_{1}, y_{2}, \ldots, y_{N-1}, y_{N}\right\} \subset[c, d]$

Let tags $\mathcal{T}:=\left\{y_{1}^{*}, y_{2}^{*}, y_{3}^{*}, \ldots, y_{N-1}^{*}, y_{N}^{*}\right\} \subset[c, d]$

- Key element: H-Washer (i.e. washer lying down)

Thickness	of	$k^{t h} \mathrm{H}$-Washer	$:=$ (Length of $k^{t h}$ subinterval)	$=\Delta y_{k}$
Outer Radius	of	$k^{t h} \mathrm{H}$-Washer	$:=$ (Distance between farther BC \& axis of rev.)	$=p\left(y_{k}^{*}\right)$
Inner Radius	of	$k^{t h} \mathrm{H}$-Washer	$:=$ (Distance between closer BC \& axis of rev.)	$=q\left(y_{k}^{*}\right)$
Volume	of	$k^{t h} \mathrm{H}$-Washer	$:=\pi \times\left[(\text { Outer R. })^{2}-(\text { Inner R. })^{2}\right] \times($ Thick. $)$	$=\pi\left(\left[p\left(y_{k}^{*}\right)\right]^{2}-\left[q\left(y_{k}^{*}\right)\right]^{2}\right) \Delta y_{k}$

- Riemann Sum: Volume $(S) \approx V_{N}^{*}:=\sum_{k=1}^{N} \pi\left(\left[p\left(y_{k}^{*}\right)\right]^{2}-\left[q\left(y_{k}^{*}\right)\right]^{2}\right) \Delta y_{k}$
- Integral: Volume $(S)=\lim _{N \rightarrow \infty} V_{N}^{*}=\int_{c}^{d} \pi\left([p(y)]^{2}-[q(y)]^{2}\right) d y$

- REMARKS:

- The same procedure for region R outlined in the $1^{\text {st }}$ page above applies here as well.
- A disk is simply a washer without a hole \Longrightarrow either the curve $g(x)=0$ (x-axis) or the curve $q(y)=0$ (y-axis).
- If the axis of revolution is neither the x-axis nor the y-axis but rather $x=\alpha$ or $y=\beta$ where $\alpha, \beta \in \mathbb{R}$, then the radii of the $k^{t h}$ washer would be the distance from the respective curve to the axis of revolution.
- SETUP: Given $f, g \in C[a, b]$ s.t. $f(x) \geq g(x) \quad \forall x \in[a, b]$

Let R be the region bounded by curves $y=f(x), y=g(x)$, and the lines $x=a, x=b$.
Let S be the solid formed by revolving region R about the y-axis.
TASK: Find the volume of the solid of revolution S about the y-axis using shells.

- Let partition $\mathcal{P}:=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{N-1}, x_{N}\right\} \subset[a, b]$

$$
\text { Let tags } \mathcal{T}:=\left\{x_{1}^{*}, x_{2}^{*}, x_{3}^{*}, \ldots, x_{N-1}^{*}, x_{N}^{*}\right\} \subset[a, b]
$$

- Key element: V-Shell (i.e. cylindrical shell standing up)

Thickness of $k^{t h}$ V-Shell $:=$ (Length of $k^{t h}$ subinterval) $=\Delta x_{k}$
Radius of $k^{t h}$ V-Shell $:=$ (Distance from V-shell to axis of revolution) $=x_{k}^{*}$

Height	of	$k^{\text {th }}$ V-Shell	$:=($ Top BC $)-($ Bottom BC $)$	$=f\left(x_{k}^{*}\right)-g\left(x_{k}^{*}\right)$
Volume	of	$k^{t h}$ V-Shell	$:=2 \pi \times($ Radius $) \times($ Height $) \times($ Thickness $)$	$=2 \pi x_{k}^{*}\left[f\left(x_{k}^{*}\right)-g\left(x_{k}^{*}\right)\right] \Delta x_{k}$

- Riemann Sum: Volume $(S) \approx V_{N}^{*}:=\sum_{k=1}^{N} 2 \pi x_{k}^{*}\left[f\left(x_{k}^{*}\right)-g\left(x_{k}^{*}\right)\right] \Delta x_{k}$
- Integral: Volume $(S)=\lim _{N \rightarrow \infty} V_{N}^{*}=\int_{a}^{b} 2 \pi x[f(x)-g(x)] d x$

- VOLUMES OF SOLIDS BY REVOLVING A H-ALIGNED REGION ABOUT X-AXIS USING SHELLS:

- SETUP: Given $p, q \in C[c, d]$ s.t. $p(y) \geq q(y) \quad \forall y \in[c, d]$

Let R be the region bounded by curves $x=p(y), x=q(y)$, and the lines $y=c, y=d$.
Let S be the solid formed by revolving region R about the x-axis.

- TASK: Find the volume of the solid of revolution S about the x-axis using shells.
- Let partition $\mathcal{P}:=\left\{y_{0}, y_{1}, y_{2}, \ldots, y_{N-1}, y_{N}\right\} \subset[c, d]$

Let tags $\mathcal{T}:=\left\{y_{1}^{*}, y_{2}^{*}, y_{3}^{*}, \ldots, y_{N-1}^{*}, y_{N}^{*}\right\} \subset[c, d]$

- Key element: H-Shell (i.e. cylindrical shell standing up)

Thickness of $k^{t h}$ H-Shell $:=$ (Length of $k^{t h}$ subinterval) $=\Delta y_{k}$

Radius	of $k^{t h} \mathrm{H}$-Shell $:=$ (Distance from H-shell to axis of revolution)	$=y_{k}^{*}$	
Length	of $k^{t h} \mathrm{H}$-Shell $:=$ (Right BC) $-($ Left BC $)$	$=p\left(y_{k}^{*}\right)-q\left(y_{k}^{*}\right)$	
Volume	of	$k^{t h} \mathrm{H}$-Shell	$:=$

- Riemann Sum: Volume $(S) \approx V_{N}^{*}:=\sum_{k=1}^{N} 2 \pi y_{k}^{*}\left[p\left(y_{k}^{*}\right)-q\left(y_{k}^{*}\right)\right] \Delta y_{k}$
- Integral: Volume $(S)=\lim _{N \rightarrow \infty} V_{N}^{*}=\int_{c}^{d} 2 \pi y[p(y)-q(y)] d y$

- REMARKS:

- The same procedure for region R outlined in the $1^{\text {st }}$ page above applies here as well.
- If the axis of revolution is neither the x-axis nor the y-axis but rather $x=\alpha$ or $y=\beta$ where $\alpha, \beta \in \mathbb{R}$, then the radius of the $k^{t h}$ shell will be the distance from the shell to the axis of revolution.

EX 6.2.1: Let R be the region bounded by curves $y=2-x^{2}, y=x$, and the y-axis (with $x \geq 0$).
Let S be the solid with base R and square cross sections \perp to the x-axis that protrude towards you.
(a) Sketch \& characterize region R (b) Setup integral(s) to find the volume of S.

EX 6.2.2: Let R be the region bounded by curves $y=2-x^{2}, y=x$, and the y-axis (with $x \geq 0$).
Let S be the solid with base R and square cross sections \perp to the y-axis that protrude towards you.
(a) Sketch \& characterize region R (b) Setup integral(s) to find the volume of S.

EX 6.2.3: Let R be the region bounded by curves $y=2-x^{2}, y=x$, and the y-axis (with $x \geq 0$).
Let S be the solid with base R and semicircular cross sections \perp to the x-axis that protrude towards you.
(a) Sketch \& characterize region R (b) Setup integral(s) to find the volume of S.

EX 6.2.4: Let R be the region bounded by curves $y=2-x^{2}, y=x$, and the y-axis (with $x \geq 0$).
Let S be the solid with base R and semicircular cross sections \perp to the y-axis that protrude towards you.
(a) Sketch \& characterize region R (b) Setup integral(s) to find the volume of S.

EX 6.2.5: Let R be the region bounded by curves $y=2-x^{2}, y=x$, and the y-axis (with $x \geq 0$).
Let S be the solid formed by revolving region R about the y-axis using washers.
(a) Sketch \& characterize region $R \&$ axis of revolution. (b) Setup integral(s) to find the volume of S.

EX 6.2.6: Let R be the region bounded by curves $y=2-x^{2}, y=x$, and the y-axis (with $x \geq 0$).
Let S be the solid formed by revolving region R about the y-axis using shells.
(a) Sketch \& characterize region $R \&$ axis of revolution.
(b) Setup integral(s) to find the volume of S.

EX 6.2.7: Let R be the region bounded by curves $y=2-x^{2}, y=x$, and the y-axis (with $x \geq 0$).
Let S be the solid formed by revolving region R about the x-axis using washers.
(a) Sketch \& characterize region $R \&$ axis of revolution. (b) Setup integral(s) to find the volume of S.

EX 6.2.8: Let R be the region bounded by curves $y=2-x^{2}, y=x$, and the y-axis (with $x \geq 0$).
Let S be the solid formed by revolving region R about the x-axis using shells.
(a) Sketch \& characterize region $R \&$ axis of revolution. (b) Setup integral(s) to find the volume of S.

EX 6.2.9: Let R be the region bounded by curves $y=2-x^{2}, y=x$, and the y-axis (with $x \geq 0$).
Let S be the solid formed by revolving region R about the line $x=-1$ using washers.
(a) Sketch \& characterize region $R \&$ axis of revolution. (b) Setup integral(s) to find the volume of S.

EX 6.2.10: Let R be the region bounded by curves $y=2-x^{2}, y=x$, and the y-axis (with $x \geq 0$).
Let S be the solid formed by revolving region R about the line $x=-1$ using shells.
(a) Sketch \& characterize region R \& axis of revolution.
(b) Setup integral(s) to find the volume of S.

EX 6.2.11: Let R be the region bounded by curves $y=2-x^{2}, y=x$, and the y-axis (with $x \geq 0$).
Let S be the solid formed by revolving region R about the line $y=3$ using washers.
(a) Sketch \& characterize region $R \&$ axis of revolution. (b) Setup integral(s) to find the volume of S.

EX 6.2.12: Let R be the region bounded by curves $y=2-x^{2}, y=x$, and the y-axis (with $x \geq 0$).
Let S be the solid formed by revolving region R about the line $y=3$ using shells.
(a) Sketch \& characterize region $R \&$ axis of revolution. (b) Setup integral(s) to find the volume of S.

