- RECTANGULAR (CARTESIAN) COORDINATES:
- Form: (x, y) where $x, y \in \mathbb{R}$
- Origin: $(x, y)=(0,0)$ (Notice the origin has a unique rectangular coordinate)
- Coordinate (x, y) is unique.

- POLAR COORDINATES:

- Form: (r, θ) where $\theta \in \mathbb{R}$ is ALWAYS in radians and $r \in \mathbb{R} \quad$ (Notice: r can be negative)
- Pole: $(r, \theta)=(0, \theta) \quad$ (Notice there's no unique polar coordinate for the pole)
- Coordinate (r, θ) is NOT unique.
* $(-r, \theta)=(r, \theta+\pi)$
* $(r, \theta)=(r, \theta+2 n \pi)=(-r, \theta+(2 n+1) \pi)$ where $n \in \mathbb{Z}$
* e.g. $\left(2, \frac{7 \pi}{4}\right)=\left(2,-\frac{\pi}{4}\right)=\left(-2, \frac{3 \pi}{4}\right)=\left(-2,-\frac{5 \pi}{4}\right)$
- Polar \rightarrow Rectangular: $x=r \cos \theta, y=r \sin \theta$
- Rectangular \rightarrow Polar: $r^{2}=x^{2}+y^{2}, \tan \theta=\frac{y}{x}$, provided $x \neq 0$
- GRAPHING POLAR CURVE: $r=f(\theta)$
- First, graph $r=f(\theta)$ on the usual $x y$-plane where $x=\theta \& y=r$. (rectangular plot)

Use special angles for $\theta:\left\{0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}, \pi, \frac{5 \pi}{4}, \frac{3 \pi}{2}, \frac{7 \pi}{4}, 2 \pi\right\}$
If $f(\theta)$ has a trig fcn, set its argument to these special angles and solve for θ :

$$
* \text { e.g. } f(\theta)=7 \sin (2 \theta) \Longrightarrow 2 \theta \in\left\{0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}, \pi, \frac{5 \pi}{4}, \frac{3 \pi}{2}, \frac{7 \pi}{4}, 2 \pi\right\} \Longrightarrow \theta \in\left\{0, \frac{\pi}{8}, \frac{\pi}{4}, \frac{3 \pi}{8}, \frac{\pi}{2}, \frac{5 \pi}{8}, \frac{3 \pi}{4}, \frac{7 \pi}{8}, \pi\right\}
$$

- Next, use the rectangular plot of $r=f(\theta)$ to trace the polar graph of $r=f(\theta)$.
- IMPORTANT: Except for equations of lines, connect the dots using smooth curves, not line segments!
- POLAR CURVES: $\quad\left(a, b, c \in \mathbb{R} \backslash\{0\}, n \in \mathbb{Z}_{+}\right)$
- EITHER GRAPH OR CONVERT TO RECTANGULAR FORM:
* Lines thru Pole (Origin): $\theta=c$
* Circles: $r=c, r=a \cos \theta, r=a \sin \theta$
- ALWAYS CONVERT TO RECTANGULAR FORM (ALWAYS!):
* Horizontal Lines off-pole: $r=a \csc \theta$
* Vertical Lines off-pole: $\quad r=a \sec \theta$
- ALWAYS GRAPH (ALWAYS!):
* Cardioids: $r=a \pm a \cos \theta, r=a \pm a \sin \theta$
* Limaçons: $r=b \pm a \cos \theta, r=b \pm a \sin \theta \quad(b=a \Longrightarrow$ cardioid $)$
* Roses: $r=a \cos (n \theta), r=a \sin (n \theta) \quad(n=1 \Longrightarrow$ circle $)$
* Lemniscates: $r^{2}=a^{2} \cos (2 \theta), r^{2}=a^{2} \sin (2 \theta)$
- INTERSECTION OF TWO POLAR CURVES $r=f(\theta) \& r=g(\theta)$:
- Solving $f(\theta)=g(\theta)$ for θ finds some, but not necessarily all, intersection points.
- In particular, intersections at the pole (origin) are nearly impossible to find algebraically because the pole has no single representation in polar coordinates that satisfies both $r=f(\theta) \& r=g(\theta)$.
- Therefore, to find all intersection points, GRAPH BOTH CURVES!
- AREA OF RADIALLY SIMPLE POLAR REGION W/ POLE AS A BP: (FROM FIRST PRINCIPLES):
- SETUP: Given function $f \in C[\alpha, \beta]$ s.t. $f(\theta)$ never changes sign $\forall \theta \in[\alpha, \beta]$ and $0<\beta-\alpha \leq 2 \pi$.

Let D be the region bounded by polar curve $r=f(\theta)$ and rays $\theta=\alpha, \theta=\beta$.
TASK: Find the area of polar region D.

- Let partition $\mathcal{P}:=\left\{\theta_{0}, \theta_{1}, \theta_{2}, \ldots, \theta_{N-1}, \theta_{N}\right\} \subset[\alpha, \beta]$ be arbitrary.

Let tags $\mathcal{T}:=\left\{\theta_{1}^{*}, \theta_{2}^{*}, \theta_{3}^{*}, \ldots, \theta_{N-1}^{*}, \theta_{N}^{*}\right\} \subset[\alpha, \beta]$ be arbitrary.

- Key element: Sector

Angle	of	$k^{t h}$ Sector	$:=$	(Length of $k^{t h}$ subinterval)
Radius	of	$k^{t h}$ Sector	$:=$	(Distance from Pole to Curve)
$=\left\|f\left(\theta_{k}^{*}\right)\right\|$				
Area	of	$k^{t h}$ Sector	$:=\frac{1}{2} \times(\text { Radius })^{2} \times($ Angle $)$	$=\frac{1}{2}\left\|f\left(\theta_{k}^{*}\right)\right\|^{2} \Delta \theta_{k}=\frac{1}{2}\left[f\left(\theta_{k}^{*}\right)\right]^{2} \Delta \theta_{k}$

$\therefore \operatorname{Area}(D) \approx A_{N}^{*}:=\sum_{k=1}^{N} \frac{1}{2}\left[f\left(\theta_{k}^{*}\right)\right]^{2} \Delta \theta_{k} \Longrightarrow \operatorname{Area}(D)=\lim _{N \rightarrow \infty} A_{N}^{*}=\int_{\alpha}^{\beta} \frac{1}{2}[f(\theta)]^{2} d \theta$

- AREA OF RADIALLY SIMPLE POLAR REGION W/O POLE AS A BP: (FROM FIRST PRINCIPLES):
- SETUP: Given functions $f, g \in C[\alpha, \beta]$ s.t. $|f(\theta)| \geq|g(\theta)| \geq 0 \quad \forall \theta \in[\alpha, \beta]$ and $0<\beta-\alpha \leq 2 \pi$.

Let D be the region bounded by the polar curves $r=f(\theta), r=g(\theta)$ and rays $\theta=\alpha, \theta=\beta$.

- TASK: Find the area of polar region D.
- Let partition $\mathcal{P}:=\left\{\theta_{0}, \theta_{1}, \theta_{2}, \ldots, \theta_{N-1}, \theta_{N}\right\} \subset[\alpha, \beta]$ be arbitrary.

Let tags $\mathcal{T}:=\left\{\theta_{1}^{*}, \theta_{2}^{*}, \theta_{3}^{*}, \ldots, \theta_{N-1}^{*}, \theta_{N}^{*}\right\} \subset[\alpha, \beta]$ be arbitrary.

- Key element: Polar Rectangle (i.e. Difference of Two Sectors)

$\therefore \operatorname{Area}(D) \approx A_{N}^{*}:=\sum_{k=1}^{N} \frac{1}{2}\left(\left[f\left(\theta_{k}^{*}\right)\right]^{2}-\left[g\left(\theta_{k}^{*}\right)\right]^{2}\right) \Delta \theta_{k} \Longrightarrow \operatorname{Area}(D)=\lim _{N \rightarrow \infty} A_{N}^{*}=\int_{\alpha}^{\beta} \frac{1}{2}\left([f(\theta)]^{2}-[g(\theta)]^{2}\right) d \theta$
- AREA OF A RADIALLY SIMPLE (r-SIMPLE) POLAR REGION:
- Let D be a r-simple region s.t. $D=\left\{(r, \theta) \in \mathbb{R}^{2}: 0 \leq g_{1}(\theta) \leq r \leq g_{2}(\theta), \alpha \leq \theta \leq \beta\right.$ s.t. $\left.0<\beta-\alpha \leq 2 \pi\right\}$. Then:

$$
\operatorname{Area}(D)=\frac{1}{2} \int_{\text {Smallest } \theta \text {-value in } D}^{\text {Largest } \theta \text {-value in } D}(\text { Outer BC })^{2}-(\text { Inner BC })^{2} d \theta=\frac{1}{2} \int_{\alpha}^{\beta}\left[g_{2}(\theta)\right]^{2}-\left[g_{1}(\theta)\right]^{2} d \theta
$$

- AREA OF A QUASI-RADIALLY SIMPLE (QUASI- r-SIMPLE) POLAR REGION:
- Let D be a r-simple region s.t. $D=\left\{(r, \theta) \in \mathbb{R}^{2}: 0 \leq g_{1}(\theta) \leq r \leq g_{2}(\theta), \alpha \leq \theta \leq \beta\right.$ for $g_{1}(\theta), \gamma \leq \theta \leq \delta$ for $\left.g_{2}(\theta)\right\}$. Moreover, let BP's $\left(g_{1}(\alpha), \alpha\right),\left(g_{2}(\gamma), \gamma\right)$ share one ray \& BP's $\left(g_{1}(\beta), \beta\right),\left(g_{2}(\delta), \delta\right)$ share another ray. Then:

$$
\begin{gathered}
\text { Area }(D)=\frac{1}{2} \int_{\text {Smallest } \theta \text {-value for Outer BC }}^{\text {Largest } \theta \text {-value for Outer BC }}(\text { Outer BC })^{2} d \theta-\frac{1}{2} \int_{\text {Smallest } \theta \text {-value for Inner BC }}^{\text {Largest } \theta \text {-value for Inner BC }} \text { (Inner BC) }{ }^{2} d \theta \\
\Longrightarrow \operatorname{Area}(D)=\frac{1}{2} \int_{\gamma}^{\delta}\left[g_{2}(\theta)\right]^{2} d \theta-\frac{1}{2} \int_{\alpha}^{\beta}\left[g_{1}(\theta)\right]^{2} d \theta
\end{gathered}
$$

- HOW TO SUBDIVIDE A POLAR REGION THAT'S NEITHER r-SIMPLE NOR QUASI- r-SIMPLE:

Construct a ray that contains at least one BP that separates two outer BC's (or two inner BC's). Repeat as needed.

EX 6.3.2: Graph the polar curve $\theta=\frac{3 \pi}{4}$.

EX 6.3.3: (a) Convert the polar curve $r=3 \sec \theta$ to rectangular form. (b) Graph the curve.

EX 6.3.4: Graph the polar curve $r=4 \theta$.

EX 6.3.6: Graph the cardioid $r=3(1+\sin \theta)$.

EX 6.3.7: Graph the limaçon $r=1-4 \sin \theta$.

EX 6.3.9: Graph the lemniscate $r^{2}=4 \sin (2 \theta)$.

EX 6.3.10: Let R be the region enclosed by polar curves $r=2 \sin \theta$ and $r=2 \cos \theta$.
(a) Sketch the region $R . \quad$ (b) Setup integral to find $\operatorname{Area}(R)$.

EX 6.3.11: Let R be the region enclosed by one leaf of the rose $r=4 \cos (2 \theta)$.
(a) Sketch the region $R . \quad$ (b) Setup integral to find $\operatorname{Area}(R)$.

EX 6.3.12: Let R be the region outside the lemniscate $r^{2}=4 \cos (2 \theta)$ and inside the circle $r=3 \cos \theta$.
(a) Sketch the region $R . \quad$ (b) Setup integral to find $\operatorname{Area}(R)$.

EX 6.3.13: Compute the integral $I=\int_{0}^{\pi / 8} \cos ^{2} \theta d \theta$.

EX 6.3.14: Compute the integral $I=\int_{\pi / 4}^{\pi} \sin ^{2}(2 \theta) d \theta$.

