POLAR FORMS: [SST 6.3]

• RECTANGULAR (CARTESIAN) COORDINATES:

- Form: (x, y) where $x, y \in \mathbb{R}$
- Origin: (x, y) = (0, 0) (Notice the origin has a unique rectangular coordinate)
- Coordinate (x, y) is **unique**.

• POLAR COORDINATES:

- Form: (r, θ) where $\theta \in \mathbb{R}$ is ALWAYS in radians and $r \in \mathbb{R}$ (Notice: r can be negative)
- Pole: $(r, \theta) = (0, \theta)$ (Notice there's no unique polar coordinate for the pole)
- Coordinate (r, θ) is **NOT unique**.
 - * $(-r,\theta) = (r,\theta+\pi)$
 - * $(r, \theta) = (r, \theta + 2n\pi) = (-r, \theta + (2n+1)\pi)$ where $n \in \mathbb{Z}$ * e.g. $\left(2, \frac{7\pi}{4}\right) = \left(2, -\frac{\pi}{4}\right) = \left(-2, \frac{3\pi}{4}\right) = \left(-2, -\frac{5\pi}{4}\right)$
- Polar \rightarrow Rectangular: $x = r \cos \theta, y = r \sin \theta$
- Rectangular \rightarrow Polar: $r^2 = x^2 + y^2$, $\tan \theta = \frac{y}{r}$, provided $x \neq 0$

• **<u>GRAPHING POLAR CURVE</u>**: $r = f(\theta)$

- First, graph $r = f(\theta)$ on the usual xy-plane where $x = \theta \& y = r$. (rectangular plot) Use special angles for θ : $\left\{0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \pi, \frac{5\pi}{4}, \frac{3\pi}{2}, \frac{7\pi}{4}, 2\pi\right\}$

If $f(\theta)$ has a trig fcn, set its argument to these special angles and solve for θ :

 $* \text{ e.g. } f(\theta) = 7\sin\left(2\theta\right) \implies 2\theta \in \left\{0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \pi, \frac{5\pi}{4}, \frac{3\pi}{2}, \frac{7\pi}{4}, 2\pi\right\} \implies \theta \in \left\{0, \frac{\pi}{8}, \frac{\pi}{4}, \frac{3\pi}{8}, \frac{\pi}{2}, \frac{5\pi}{8}, \frac{3\pi}{4}, \frac{7\pi}{8}, \pi\right\}$

- Next, use the rectangular plot of $r = f(\theta)$ to **trace** the polar graph of $r = f(\theta)$.
- IMPORTANT: Except for equations of lines, connect the dots using smooth curves, not line segments!
- **<u>POLAR CURVES</u>**: $(a, b, c \in \mathbb{R} \setminus \{0\}, n \in \mathbb{Z}_+)$
 - EITHER GRAPH OR CONVERT TO RECTANGULAR FORM:
 - * Lines thru Pole (Origin): $\theta = c$
 - * Circles: $r = c, r = a \cos \theta, r = a \sin \theta$
 - ALWAYS CONVERT TO RECTANGULAR FORM (ALWAYS!):
 - * Horizontal Lines off-pole: $r = a \csc \theta$
 - * Vertical Lines off-pole: $r = a \sec \theta$
 - ALWAYS GRAPH (ALWAYS!):
 - * Cardioids: $r = a \pm a \cos \theta$, $r = a \pm a \sin \theta$
 - * Limaçons: $r = b \pm a \cos \theta$, $r = b \pm a \sin \theta$ ($b = a \implies$ cardioid)
 - * Roses: $r = a \cos(n\theta), r = a \sin(n\theta)$ $(n = 1 \implies \text{circle})$
 - * Lemniscates: $r^2 = a^2 \cos(2\theta), r^2 = a^2 \sin(2\theta)$

• INTERSECTION OF TWO POLAR CURVES $r = f(\theta) \& r = g(\theta)$:

- Solving $f(\theta) = g(\theta)$ for θ finds <u>some</u>, but not necessarily all, intersection points.
- In particular, intersections at the **pole** (origin) are nearly impossible to find algebraically because the pole has no single representation in polar coordinates that satisfies both $r = f(\theta)$ & $r = g(\theta)$.
- Therefore, to find <u>all</u> intersection points, GRAPH BOTH CURVES!

• AREA OF RADIALLY SIMPLE POLAR REGION W/ POLE AS A BP: (FROM FIRST PRINCIPLES):

- <u>SETUP</u>: Given function $f \in C[\alpha, \beta]$ s.t. $f(\theta)$ never changes sign $\forall \theta \in [\alpha, \beta]$ and $0 < \beta - \alpha \le 2\pi$.

Let D be the region bounded by polar curve $r = f(\theta)$ and rays $\theta = \alpha$, $\theta = \beta$.

- <u>TASK:</u> Find the area of polar region D.
- Let partition $\mathcal{P} := \{\theta_0, \theta_1, \theta_2, \dots, \theta_{N-1}, \theta_N\} \subset [\alpha, \beta]$ be arbitrary. Let tags $\mathcal{T} := \{\theta_1^*, \theta_2^*, \theta_3^*, \dots, \theta_{N-1}^*, \theta_N^*\} \subset [\alpha, \beta]$ be arbitrary.
- Key element: Sector
 - Angle of k^{th} Sector := (Length of k^{th} subinterval) = $\Delta \theta_k$
 - $\frac{\text{Radius of } k^{th} \text{ Sector } := (\text{Distance from Pole to Curve}) = |f(\theta_k^*)|}{\text{Area of } k^{th} \text{ Sector } := \frac{1}{2} \times (\text{Radius})^2 \times (\text{Angle}) = \frac{1}{2} |f(\theta_k^*)|^2 \Delta \theta_k = \frac{1}{2} \left[f(\theta_k^*) \right]^2 \Delta \theta_k$
- $\therefore \quad \operatorname{Area}(D) \approx A_N^* := \sum_{k=1}^N \frac{1}{2} \Big[f(\theta_k^*) \Big]^2 \Delta \theta_k \implies \quad \operatorname{Area}(D) = \lim_{N \to \infty} A_N^* = \left[\int_{\alpha}^{\beta} \frac{1}{2} \Big[f(\theta) \Big]^2 \ d\theta \right]$

• AREA OF RADIALLY SIMPLE POLAR REGION W/O POLE AS A BP: (FROM FIRST PRINCIPLES):

- <u>SETUP</u>: Given functions $f, g \in C[\alpha, \beta]$ s.t. $|f(\theta)| \ge |g(\theta)| \ge 0 \quad \forall \theta \in [\alpha, \beta]$ and $0 < \beta \alpha \le 2\pi$. Let *D* be the region bounded by the polar curves $r = f(\theta), r = g(\theta)$ and rays $\theta = \alpha, \theta = \beta$.
- <u>TASK:</u> Find the area of polar region *D*.
- Let partition $\mathcal{P} := \{\theta_0, \theta_1, \theta_2, \dots, \theta_{N-1}, \theta_N\} \subset [\alpha, \beta]$ be arbitrary. Let tags $\mathcal{T} := \{\theta_1^*, \theta_2^*, \theta_3^*, \dots, \theta_{N-1}^*, \theta_N^*\} \subset [\alpha, \beta]$ be arbitrary.
- Key element: Polar Rectangle (i.e. Difference of Two Sectors)

$$\begin{array}{rcl} \text{Angle} & \text{of} & \text{larger } k^{th} \text{ Sector} & := & \left(\text{Length of } k^{th} \text{ subinterval}\right) & = & \Delta \theta_k \\ \text{Radius} & \text{of} & \text{larger } k^{th} \text{ Sector} & := & \left(\text{Distance from Pole to Curve } f\right) & = & |f(\theta_k^*)| \\ \hline \text{Area} & \text{of} & \text{larger } k^{th} \text{ Sector} & := & \frac{1}{2} \times \left(\text{Radius}\right)^2 \times \left(\text{Angle}\right) & = & \frac{1}{2} |f(\theta_k^*)|^2 \Delta \theta_k = \frac{1}{2} \left[f(\theta_k^*)\right]^2 \Delta \theta_k \\ \hline \text{Angle} & \text{of} & \text{smaller } k^{th} \text{ Sector} & := & \left(\text{Length of } k^{th} \text{ subinterval}\right) & = & \Delta \theta_k \\ \hline \text{Radius} & \text{of} & \text{smaller } k^{th} \text{ Sector} & := & \left(\text{Length of } k^{th} \text{ subinterval}\right) & = & \Delta \theta_k \\ \hline \text{Radius} & \text{of} & \text{smaller } k^{th} \text{ Sector} & := & \left(\text{Distance from Pole to Curve } g\right) & = & |g(\theta_k^*)| \\ \hline \text{Area} & \text{of} & \text{smaller } k^{th} \text{ Sector} & := & \frac{1}{2} \times \left(\text{Radius}\right)^2 \times \left(\text{Angle}\right) & = & \frac{1}{2} |g(\theta_k^*)|^2 \Delta \theta_k = \frac{1}{2} \left[g(\theta_k^*)\right]^2 \Delta \theta_k \\ \hline \text{Area} & \text{of} & k^{th} \text{ Polar Rectangle} & := & \left(\text{Larger Sector}\right) - \left(\text{Smaller Sector}\right) & = & \frac{1}{2} \left(\left[f(\theta_k^*)\right]^2 - \left[g(\theta_k^*)\right]^2\right) \Delta \theta_k \\ \hline \text{Area}(D) & \approx A_N^* := \sum_{k=1}^N \frac{1}{2} \left(\left[f(\theta_k^*)\right]^2 - \left[g(\theta_k^*)\right]^2\right) \Delta \theta_k \implies \text{Area}(D) = \lim_{N \to \infty} A_N^* = \left[\int_{\alpha}^{\beta} \frac{1}{2} \left(\left[f(\theta_k)\right]^2 - \left[g(\theta_k)\right]^2\right) d\theta\right] \\ \hline \end{array}$$

• AREA OF A RADIALLY SIMPLE (*r*-SIMPLE) POLAR REGION:

- Let D be a r-simple region s.t. $D = \{(r, \theta) \in \mathbb{R}^2 : 0 \le g_1(\theta) \le r \le g_2(\theta), \alpha \le \theta \le \beta \text{ s.t. } 0 < \beta - \alpha \le 2\pi\}.$ Then:

$$\operatorname{Area}(D) = \frac{1}{2} \int_{\operatorname{Smallest} \theta \text{-value in } D}^{\operatorname{Largest} \theta \text{-value in } D} (\operatorname{Outer BC})^2 - (\operatorname{Inner BC})^2 \, d\theta = \frac{1}{2} \int_{\alpha}^{\beta} [g_2(\theta)]^2 - [g_1(\theta)]^2 \, d\theta$$

• AREA OF A QUASI-RADIALLY SIMPLE (QUASI-*r*-SIMPLE) POLAR REGION:

- Let *D* be a *r*-simple region s.t. $D = \{(r, \theta) \in \mathbb{R}^2 : 0 \le g_1(\theta) \le r \le g_2(\theta), \alpha \le \theta \le \beta \text{ for } g_1(\theta), \gamma \le \theta \le \delta \text{ for } g_2(\theta)\}$. Moreover, let BP's $(g_1(\alpha), \alpha), (g_2(\gamma), \gamma)$ share one ray & BP's $(g_1(\beta), \beta), (g_2(\delta), \delta)$ share another ray. Then:

$$Area(D) = \frac{1}{2} \int_{\text{Smallest } \theta \text{-value for Outer BC}}^{\text{Largest } \theta \text{-value for Inner BC}} (\text{Outer BC})^2 \ d\theta - \frac{1}{2} \int_{\text{Smallest } \theta \text{-value for Inner BC}}^{\text{Largest } \theta \text{-value for Inner BC}} (\text{Inner BC})^2 \ d\theta \\ \implies \text{Area}(D) = \frac{1}{2} \int_{\gamma}^{\delta} [g_2(\theta)]^2 \ d\theta - \frac{1}{2} \int_{\alpha}^{\beta} [g_1(\theta)]^2 \ d\theta$$

• HOW TO SUBDIVIDE A POLAR REGION THAT'S NEITHER *r*-SIMPLE NOR QUASI-*r*-SIMPLE:

Construct a ray that contains at least one BP that separates two outer BC's (or two inner BC's). Repeat as needed.

. [.] .

^{©2013} Josh Engwer - Revised October 16, 2015

<u>EX 6.3.2</u> Graph the polar curve $\theta = \frac{3\pi}{4}$.

EX 6.3.3:

(a) Convert the polar curve $r = 3 \sec \theta$ to rectangular form.

(b) Graph the curve.

<u>EX 6.3.4</u> Graph the polar curve $r = 4\theta$.

EX 6.3.6: Graph the cardioid $r = 3(1 + \sin \theta)$.

<u>EX 6.3.7</u>: Graph the limaçon $r = 1 - 4 \sin \theta$.

EX 6.3.8: Graph the rose $r = 4\sin(2\theta)$.

<u>EX 6.3.9</u>: Graph the lemniscate $r^2 = 4\sin(2\theta)$.

©2013 Josh Engwer – Revised October 16, 2015

<u>EX 6.3.10</u>: Let *R* be the region enclosed by polar curves $r = 2 \sin \theta$ and $r = 2 \cos \theta$.

(a) Sketch the region R.

(b) Setup integral to find Area(R).

<u>EX 6.3.11</u>: Let *R* be the region enclosed by one leaf of the rose $r = 4\cos(2\theta)$.

(a) Sketch the region R.

(b) Setup integral to find Area(R).

©2013 Josh Engwer – Revised October 16, 2015

<u>EX 6.3.12</u>: Let *R* be the region outside the lemniscate $r^2 = 4\cos(2\theta)$ and inside the circle $r = 3\cos\theta$.

(a) Sketch the region R.

(b) Setup integral to find $\operatorname{Area}(R)$.

<u>EX 6.3.14</u>: Compute the integral $I = \int_{\pi/4}^{\pi} \sin^2(2\theta) \ d\theta.$