ARC LENGTH \& SURFACE AREA: [SST 6.4]

- ARC LENGTH OF $y=f(x)$:
- SETUP: Given function $f \in C^{1}[a, b]$. Let Γ be the curve $y=f(x)$ bounded by the vertical lines $x=a \& x=b$.

TASK: Find the arc length of Γ

- Let partition $\mathcal{P}:=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{N-1}, x_{N}\right\} \& \operatorname{tags} \mathcal{T}:=\left\{x_{1}^{*}, x_{2}^{*}, \ldots, x_{N-1}^{*}, x_{N}^{*}\right\}$ s.t. $\mathcal{P} \subset[a, b]$
- Key element: Line Segment
- Length of $k^{\text {th }}$ Line Segment $=\sqrt{\left(\Delta x_{k}\right)^{2}+\left(\Delta y_{k}\right)^{2}}=\sqrt{1+\left(\frac{\Delta y_{k}}{\Delta x_{k}}\right)^{2}} \Delta x_{k} \stackrel{M V T}{=} \sqrt{1+\left[f^{\prime}\left(x_{k}^{*}\right)\right]^{2}} \Delta x_{k}$
$-\operatorname{ArcLength}(\Gamma) \approx L_{N}^{*}=\sum_{k=1}^{N} \sqrt{1+\left[f^{\prime}\left(x_{k}^{*}\right)\right]^{2}} \Delta x_{k}$
$-\operatorname{ArcLength}(\Gamma)=\lim _{N \rightarrow \infty} L_{N}^{*}=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x$

- ARC LENGTH OF $x=g(y)$:

- SETUP: Given function $g \in C^{1}[c, d]$. Let Γ be the curve $x=g(y)$ bounded by the horizontal lines $y=c \& y=d$.
- TASK: Find the arc length of Γ
- Let partition $\mathcal{P}:=\left\{y_{0}, y_{1}, y_{2}, \ldots, y_{N-1}, y_{N}\right\} \&$ tags $\mathcal{T}:=\left\{y_{1}^{*}, y_{2}^{*}, \ldots, y_{N-1}^{*}, y_{N}^{*}\right\}$ s.t. $\mathcal{P} \subset[c, d]$
- Key element: Line Segment
- Length of $k^{t h}$ Line Segment $=\sqrt{\left(\Delta x_{k}\right)^{2}+\left(\Delta y_{k}\right)^{2}}=\sqrt{1+\left(\frac{\Delta x_{k}}{\Delta y_{k}}\right)^{2}} \Delta y_{k} \stackrel{M V T}{=} \sqrt{1+\left[g^{\prime}\left(y_{k}^{*}\right)\right]^{2}} \Delta y_{k}$
$-\operatorname{ArcLength}(\Gamma) \approx L_{N}^{*}=\sum_{k=1}^{N} \sqrt{1+\left[g^{\prime}\left(y_{k}^{*}\right)\right]^{2}} \Delta y_{k}$
$\operatorname{ArcLength}(\Gamma)=\lim _{N \rightarrow \infty} L_{N}^{*}=\int_{c}^{d} \sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y$

- ARC LENGTH OF POLAR CURVE $r=f(\theta)$:

- SETUP: Given function $f \in C^{1}[\alpha, \beta]$. Let Γ be the polar curve $r=f(\theta)$ bounded by the rays $\theta=\alpha \& \theta=\beta$.
- TASK: Find the arc length of Γ
- Instead of building the Riemann sum from scratch, just convert the key element's length into polar form:
- Length of $k^{\text {th }}$ Line Segment $=\sqrt{\left(\Delta x_{k}\right)^{2}+\left(\Delta y_{k}\right)^{2}} \stackrel{C I 1}{=}\left(\frac{\Delta \theta_{k}}{\Delta \theta_{k}}\right) \sqrt{\left(\Delta x_{k}\right)^{2}+\left(\Delta y_{k}\right)^{2}}=\sqrt{\left(\frac{\Delta x_{k}}{\Delta \theta_{k}}\right)^{2}+\left(\frac{\Delta y_{k}}{\Delta \theta_{k}}\right)^{2}} \Delta \theta_{k}$
$-\operatorname{ArcLength}(\Gamma) \approx L_{N}^{*}=\sum_{k=1}^{N} \sqrt{\left(\frac{\Delta x_{k}}{\Delta \theta_{k}}\right)^{2}+\left(\frac{\Delta y_{k}}{\Delta \theta_{k}}\right)^{2}} \Delta \theta_{k}$
$-\operatorname{ArcLength}(\Gamma)=\lim _{N \rightarrow \infty} L_{N}^{*}=\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}} d \theta$
- Now, the integral needs to be purely in terms of θ, so write $\frac{d x}{d \theta} \& \frac{d y}{d \theta}$ in polar coordinates:
$\left\{\begin{array}{l}x=r \cos \theta=f(\theta) \cos \theta \\ y=r \sin \theta=f(\theta) \sin \theta\end{array} \Longrightarrow\left\{\begin{array}{l}\frac{d x}{d \theta}=f^{\prime}(\theta) \cos \theta-f(\theta) \sin \theta \\ \frac{d y}{d \theta}=f^{\prime}(\theta) \sin \theta+f(\theta) \cos \theta\end{array} \Longrightarrow\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}=[f(\theta)]^{2}+\left[f^{\prime}(\theta)\right]^{2}\right.\right.$
$-\operatorname{ArcLength}(\Gamma)=\int_{\alpha}^{\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta=\int_{\alpha}^{\beta} \sqrt{[f(\theta)]^{2}+\left[f^{\prime}(\theta)\right]^{2}} d \theta$
- SURFACE AREA OF CURVE $y=f(x)$ REVOLVED ABOUT THE X-AXIS:
- SETUP: Given $f \in C^{1}[a, b]$. Let Γ be the curve $y=f(x)$ bounded by the vertical lines $x=a \& x=b$.

Let S be the surface formed by revolving Γ about the x-axis.
TASK: Find the surface area of S.

- Let partition $\mathcal{P}:=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{N-1}, x_{N}\right\} \& \operatorname{tags} \mathcal{T}:=\left\{x_{1}^{*}, x_{2}^{*}, \ldots, x_{N-1}^{*}, x_{N}^{*}\right\}$ s.t. $\mathcal{P} \subset[a, b]$
- Key element: V-Band

Average Radius	of	$k^{t h}$ V-Band	$:=\frac{1}{2}\left[f\left(x_{k-1}^{*}\right)+f\left(x_{k}^{*}\right)\right]$	\approx	$f\left(x_{k}^{*}\right)$
Slant Height	of	$k^{\text {th }}$ V-Band	$:=\sqrt{\left(\Delta x_{k}\right)^{2}+\left(\Delta y_{k}\right)^{2}}$	$\sqrt{1+\left[f^{\prime}\left(x_{k}^{*}\right)\right]^{2}} \Delta x_{k}$	
Surface Area	of	$k^{\text {th }}$ V-Band	$:=$	$2 \pi \times($ Average Radius $) \times($ Slant Height $)$	\approx
$2 \pi f\left(x_{k}^{*}\right) \sqrt{1+\left[f^{\prime}\left(x_{k}^{*}\right)\right]^{2}} \Delta x_{k}$					

- Riemann Sum: SurfaceArea(S) $\approx S A_{N}^{*}:=\sum_{k=1}^{N} 2 \pi f\left(x_{k}^{*}\right) \sqrt{1+\left[f^{\prime}\left(x_{k}^{*}\right)\right]^{2}} \Delta x_{k}$
- Integral: SurfaceArea(S) $=\lim _{N \rightarrow \infty} S A_{N}^{*}=\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x$
- SURFACE AREA OF CURVE $x=g(y)$ REVOLVED ABOUT THE Y-AXIS:
- SETUP: Given $g \in C^{1}[c, d]$. Let Γ be the curve $x=g(y)$ bounded by the horizontal lines $y=c \& y=d$.

Let S be the surface formed by revolving Γ about the y-axis.

- TASK: Find the surface area of S.
- Let partition $\mathcal{P}:=\left\{y_{0}, y_{1}, y_{2}, \ldots, y_{N-1}, y_{N}\right\} \&$ tags $\mathcal{T}:=\left\{y_{1}^{*}, y_{2}^{*}, \ldots, y_{N-1}^{*}, y_{N}^{*}\right\}$ s.t. $\mathcal{P} \subset[c, d]$
- Key element: H-Band

Average Radius	of	$k^{t h}$ H-Band	$:=\frac{1}{2}\left[g\left(y_{k-1}^{*}\right)+g\left(y_{k}^{*}\right)\right]$	$\approx g\left(y_{k}^{*}\right)$	
Slant Height	of	$k^{t h}$ H-Band	$:=\sqrt{\left(\Delta x_{k}\right)^{2}+\left(\Delta y_{k}\right)^{2}}$	M^{T}	$\sqrt{1+\left[g^{\prime}\left(y_{k}^{*}\right)\right]^{2}} \Delta y_{k}$
Surface Area	of	$k^{t h}$ H-Band	$:=$	$2 \pi \times($ Average Radius $) \times($ Slant Height $)$	\approx
$2 \pi g\left(y_{k}^{*}\right) \sqrt{1+\left[g^{\prime}\left(y_{k}^{*}\right)\right]^{2}} \Delta y_{k}$					

- Riemann Sum: SurfaceArea(S) $\approx S A_{N}^{*}:=\sum_{k=1}^{N} 2 \pi g\left(y_{k}^{*}\right) \sqrt{1+\left[g^{\prime}\left(y_{k}^{*}\right)\right]^{2}} \Delta y_{k}$
- Integral: \quad SurfaceArea $(S)=\lim _{N \rightarrow \infty} S A_{N}^{*}=\longdiv { \int _ { c } ^ { d } 2 \pi g (y) \sqrt { 1 + [g ^ { \prime } (y)] ^ { 2 } } d y }$
- SURFACE AREA IN POLAR COORDINATES: Given $f \in C^{1}[\alpha, \beta]$.
- Let Γ be the curve $r=f(\theta)$ bounded by rays $\theta=\alpha \& \theta=\beta$.
- Let S be the surface formed by revolving Γ about the x-axis.

$$
\text { SurfaceArea }(\mathrm{S})=\int_{\alpha}^{\beta} 2 \pi r \sin \theta \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta=\int_{\alpha}^{\beta} 2 \pi f(\theta) \sin \theta \sqrt{[f(\theta)]^{2}+\left[f^{\prime}(\theta)\right]^{2}} d \theta
$$

- Let S be the surface formed by revolving Γ about the y-axis.

$$
\text { SurfaceArea }(\mathrm{S})=\int_{\alpha}^{\beta} 2 \pi r \cos \theta \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta=\int_{\alpha}^{\beta} 2 \pi f(\theta) \cos \theta \sqrt{[f(\theta)]^{2}+\left[f^{\prime}(\theta)\right]^{2}} d \theta
$$

Setup integral to find the arc length of Γ.

EX 6.4.2: Let Γ be the curve $x=\sqrt[5]{y}$ bounded by the lines $y=-3 \& y=7$.
Setup integral to find the arc length of Γ.

EX 6.4.3: Let Γ be the polar curve $r=2 \theta$ over the interval $\theta \in\left[0, \frac{3 \pi}{4}\right]$.
(a) Setup integral to find the arc length of Γ.
(b) Setup integral to find the surface area of the surface S_{1} formed by revolving Γ about the x-axis.
(c) Setup integral to find the surface area of the surface S_{2} formed by revolving Γ about the y-axis.

EX 6.4.4: Let Γ be the curve $y=e^{x}$ over the interval $x \in[0,2]$.
Let S be the surface formed by revolving Γ about the x-axis.
Setup integral to find the surface area of S.

EX 6.4.5: Let Γ be the curve $y=e^{x}$ over the interval $x \in[0,2]$.
Let S be the surface formed by revolving Γ about the y-axis.
Setup integral to find the surface area of S.

[^0]EX 6.4.6: Let Γ be the curve $y=e^{x}$ over the interval $x \in[0,2]$.
Let S be the surface formed by revolving Γ about the line $y=-2$.
Setup integral to find the surface area of S.

EX 6.4.7: Let Γ be the curve $y=e^{x}$ over the interval $x \in[0,2]$.
Let S be the surface formed by revolving Γ about the line $y=9$.
Setup integral to find the surface area of S.

[^1]EX 6.4.8: Let Γ be the curve $y=e^{x}$ over the interval $x \in[0,2]$.
Let S be the surface formed by revolving Γ about the line $x=-3$.
Setup integral to find the surface area of S.

EX 6.4.9: Let Γ be the curve $y=e^{x}$ over the interval $x \in[0,2]$.
Let S be the surface formed by revolving Γ about the line $x=5$.
Setup integral to find the surface area of S.

[^0]: © 2013 Josh Engwer - Revised January 19, 2014

[^1]: © 2013 Josh Engwer - Revised January 19, 2014

