WORK, FLUID FORCE, CENTROIDS: [SST 6.5]

• ELEMENTARY DEFINITION OF WORK:

- The work done by a <u>constant</u> force on an object moving it a <u>constant</u> distance along a straight line:
- (Work) = (Force) × (Distance)

• WORK DONE BY A VARIABLE FORCE ALONG THE X-AXIS:

- <u>SETUP</u>: Given function $F \in C[a, b]$ s.t. y = F(x).
- TASK: Find the work done by the variable force F(x) in moving an object from x = a to x = b
- Let partition $\mathcal{P} := \{x_0, x_1, x_2, \dots, x_{N-1}, x_N\} \subset [a, b]$ be arbitrary. Let tags $\mathcal{T} := \{x_1^*, x_2^*, x_3^*, \dots, x_{N-1}^*, x_N^*\} \subset [a, b]$ be arbitrary.
- Key element: Subinterval $[x_{k-1}, x_k]$
 - Distance of k^{th} Subinterval := (Length of k^{th} subinterval) = Δx_k Force along k^{th} Subinterval (Assuming Δx_k is small) $\approx F(x_k^*)$

Work along
$$k^{th}$$
 Subinterval := (Force) × (Distance) = $F(x_k^*) \Delta x_k$

- Work done by force
$$F(x)$$
 over $[a,b] \approx W_N^* := \sum_{k=1} F(x_k^*) \Delta x_k$

- Work done by force F(x) over $[a, b] = \lim_{N \to \infty} W_N^* = \int_a^b F(x) dx$

• WORK DONE BY A VARIABLE FORCE ALONG THE Y-AXIS:

- <u>SETUP</u>: Given function $G \in C[c, d]$ s.t. x = G(y).
- TASK: Find the work done by the variable force G(y) in moving an object from y = c to y = d
- Let partition $\mathcal{P} := \{y_0, y_1, y_2, \dots, y_{N-1}, y_N\} \subset [c, d]$ be arbitrary. Let tags $\mathcal{T} := \{y_1^*, y_2^*, \dots, y_{N-1}^*, y_N^*\} \subset [c, d]$ be arbitrary.

- Key element: Subinterval $[y_{k-1}, y_k]$

Distance of
$$k^{th}$$
 Subinterval := $\left(\text{Length of } k^{th} \text{ subinterval}\right) = \Delta y_k$
Force along k^{th} Subinterval (Assuming Δy_k is small) $\approx F(y_k^*)$
Work along k^{th} Subinterval := $\left(\text{Force}\right) \times \left(\text{Distance}\right) = F(y_k^*) \Delta y_k$

- Work done by force
$$G(y)$$
 over $[c,d] \approx W_N^* := \sum_{k=1}^N G(y_k^*) \Delta y_k$

- Work done by force
$$G(y)$$
 over $[c, d] = \lim_{N \to \infty} W_N^* = \int_c^d G(y) \, dy$

• HOOKE'S LAW FOR SPRINGS:

- <u>SETUP</u>: Given spring with stiffness constant k > 0 fixed at one end and freely move horizontally.
- $-x \equiv$ distance from the spring's equilibrium position (AKA natural length).
- <u>Hooke's Law:</u> The restoring force F(x) = kx

• <u>REMARKS</u>:

- For physics problems, it's crucial to choose a sensible coordinate system.

	Mass	Distance	Force	Work
- Be aware of the units of measure in work problems - conversions may be necessary.	kg	m	Ν	J
De aware of the units of measure in work problems - conversions may be necessary.	g	cm	dyne	erg
	slug	ft	lb	ft-lb

<u>EX 6.5.1</u> Find the work done if a (constant) force of 100 lb is used to push a rock along a line 50 ft.

<u>EX 6.5.2</u> Find the work done if a force of 30 N is used to pull a block along the x-axis from x = 5 km to x = 25 km.

<u>EX 6.5.3</u> Find the work done if a force of 20 dynes is used to push an object along a line 5 m.

<u>EX 6.5.4</u> Find the work done in lifting a 15 lb bag of rice 4 ft by the handles.

<u>EX 6.5.5:</u> Find the work done in lifting a 2 ton straight horizontal beam 1000 ft. (1 ton = 2000 lb)

©2013 Josh Engwer – Revised February 10, 2014

- (a) Find the work done in moving the particle from a position of x = 2 ft to x = 4 ft.
- (b) Find the work done in moving the particle from the origin to a position of x = 3 ft.

<u>EX 6.5.7</u> A spring has a natural length of 5 ft. Suppose a 10-lb force will compress it a length of 3 ft.

(a) Find the stiffness constant, k.

(b) How much work is required to stretch the spring 4 ft from its natural length?

(c) How much work is required to compress the spring 3 ft from its natural length?

EX 6.5.8:

- (a) A cable that weighs 2 lb/ft is used to lift 900 lb cart of coal up a mine shaft 600 ft deep. Find the work done.
- (b) Suppose halfway through the lifting process the very bottom piece of cable attached to the cart snaps.

How much work was done until the cable snapped?

• WORK DONE PUMPING FLUID OUT OF A TANK:

- <u>SETUP</u>: Tank with cross-sectional area A(y) filled with fluid of weight-density δ .
- <u>TASK:</u> Find the work done pumping fluid out of tank.
- Let **partition** $\mathcal{P} := \{y_0, y_1, y_2, \dots, y_{N-1}, y_N\}$ of fluid be **arbitrary**.

Let **tags** $\mathcal{T} := \{y_1^*, y_2^*, y_3^*, \dots, y_{N-1}^*, y_N^*\}$ of fluid be **arbitrary**.

- Key element: H-Slab (of fluid)

Weight-De	nsity of	Fluid	:=	(Weight per Volume of Fluid)	≡	δ		
Thickne	ss of	k^{th} H-Slab	:=	(Length of k^{th} subinterval)	=	Δy_k		
Distance to	Spout of	k^{th} H-Slab	:=	(y-coord. of spout) - $(y$ -coord. of H-Slab)	≡	$h\left(y_{k}^{*} ight)$		
Area	of	k^{th} H-Slab		(Using appropriate geometric formula)	≡	$A\left(y_{k}^{*} ight)$		
Volume	e of	k^{th} H-Slab	:=	$\left(\text{Area} \right) \times \left(\text{Thickness} \right)$	=	$A\left(y_{k}^{*}\right)\Delta y_{k}$		
Weight	on on	k^{th} H-Slab	:=	$\left(\text{Weight-Density} \right) \times \left(\text{Volume} \right)$	=	$\delta A\left(y_{k}^{*}\right)\Delta y_{k}$		
Work do	ne pumping	k^{th} H-Slab	:=	$(Weight) \times (Distance to Spout)$	=	$\delta A\left(y_{k}^{*}\right) h\left(y_{k}^{*}\right) \Delta y_{k}$		
- Riemann Sum: Work done pumping fluid out of tank $\approx W_N^* := \sum_{k=1}^N \delta A(y_k^*) h(y_k^*) \Delta y_k$								
- Integral: Work done pumping fluid out of tank $= \lim_{N \to \infty} W_N^* = \int_{\text{bottom y-coord. of fluid}}^{\text{top y-coord. of fluid}} \delta A(y) h(y) dy$								

• <u>REMARKS</u>:

_

- For physics problems, it's crucial to choose a sensible coordinate system.

VARIABLE	PHYSICAL QUANTITY	DEFINITION	TYPICAL UNITS
g	Acceleration of Gravity	Distance per square-time	$\rm m/sec^2, ft/sec^2, mi/hr^2$
ho	Mass-Density	Mass per Volume	$\rm slugs/ft^3, kg/m^3, g/cm^3$
δ	Weight-Density	Weight per Volume	$\rm lb/ft^3, N/m^3, dynes/cm^3$
F	Fluid Force	$\mathbf{Pressure} \times \mathbf{Area}$	lbs, N, dynes
W	Work	Force \times Distance	$\operatorname{ft-lb}$, J, ergs

$$\star \text{ (Weight-Density)} = \text{ (Mass-Density)} \times \text{ (Acceleration of Gravity)} \qquad \qquad \delta = \rho g$$

EX 6.5.9: A 10 m tank has the shape of a circular cone with the base on the ground and base radius 4 m.

The tank is filled with water up to 7 m in height.

A 6 m vertical spout is attached to the top of the tank (which is the apex of the cone).

NOTE: The mass-density of water is $\rho = 1000 \text{ kg/m}^3$ & the acceleration of gravity is $g \approx 9.8 \text{ m/s}^2$.

(a) Sketch & characterize the tank & fluid. (Pick appropriate coordinate system)

(b) Setup integral to find the work required to empty the tank by pumping all the water out of the spout.

• FLUID FORCE AGAINST A THIN PLATE SUBMERGED HORIZONTALLY:

- <u>SETUP</u>: Thin plate of area A is submerged horizontally at depth h in a fluid of weight-density δ .

$$-\left|\left(\text{Fluid force}\right) = \left(\text{Pressure}\right) \times \left(\text{Area}\right) \implies F = (\delta h)A$$

- Fluid force does NOT depend on the shape or size of the container.

• FLUID FORCE AGAINST A THIN PLATE SUBMERGED VERTICALLY:

- <u>SETUP</u>: Thin plate submerged vertically in a fluid of weight-density δ .
- <u>TASK</u>: Find the fluid force against the thin plate.
- Let **partition** $\mathcal{P} := \{y_0, y_1, y_2, \dots, y_{N-1}, y_N\}$ of thin plate be **arbitrary**.

Let tags $\mathcal{T} := \{y_1^*, y_2^*, y_3^*, \dots, y_{N-1}^*, y_N^*\}$ of thin plate be arbitrary.

- Key element: H-Rect (of plate)

Weight-Density	of	Fluid	:=	(Weight per Volume of Fluid)	≡	δ		
Width	of	k^{th} H-Rect	:=	(Length of k^{th} subinterval)	=	Δy_k		
Depth	of	k^{th} H-Rect	:=	(y-coord. of Surface $) - (y$ -coord. of H-Slab $)$	=	$h\left(y_{k}^{*} ight)$		
Length	of	k^{th} H-Rect	:=	$\left(\text{Right BC of Plate} \right) - \left(\text{Left BC of Plate} \right)$	=	$L\left(y_{k}^{*} ight)$		
Pressure	on	k^{th} H-Rect	:=	$\left(\text{Weight-Density of Fluid}\right) \times \left(\text{Depth}\right)$	=	$\delta h\left(y_{k}^{*} ight)$		
Area	of	k^{th} H-Rect	:=	$\left(\text{Length} \right) imes \left(\text{Width} \right)$	=	$L\left(y_{k}^{*}\right)\Delta y_{k}$		
Fluid Force	of	k^{th} H-Rect	:=	$(Pressure) \times (Area)$	=	$\delta h\left(y_{k}^{*}\right) L\left(y_{k}^{*}\right) \Delta y_{k}$		
Riemann Sum: Fluid force against thin plate $\approx F_N^* := \sum_{k=1}^N \delta h(y_k^*) L(y_k^*) \Delta y_k$								

- Integral: Fluid force against thin plate =
$$\lim_{N \to \infty} F_N^* = \int_{\text{bottom } y \text{-coord. of plate}}^{\text{top } y \text{-coord. of plate}} \delta h(y) L(y) \, dy$$

• FLUID FORCE AGAINST ONE (VERTICAL) END OF A RESERVOIR:

- <u>SETUP</u>: **Reservoir** is filled with fluid of weight-density δ .
- <u>TASK:</u> Find the total fluid force against one end of the reservoir.
- Let **partition** $\mathcal{P} := \{y_0, y_1, y_2, \dots, y_{N-1}, y_N\}$ of fluid be **arbitrary**.

Let tags $\mathcal{T} := \{y_1^*, y_2^*, y_3^*, \dots, y_{N-1}^*, y_N^*\}$ of fluid be arbitrary.

- Key element: H-Rect (of fluid)

	Weight-Density	of	Fluid	:=	(Weight per Volume of Fluid)	≡	δ	
	Width	of	k^{th} H-Rect	:=	Length of k^{th} subinterval	=	Δy_k	
	Depth	of	k^{th} H-Rect	:=	(y-coord. of Surface) - (y-coord. of H-Slab)	=	$h\left(y_{k}^{*} ight)$	
	Length	of	k^{th} H-Rect	:=	$\left(\begin{array}{c} \text{Right BC of Reservoir} \end{array} \right) - \left(\begin{array}{c} \text{Left BC of Reservoir} \end{array} \right)$	=	$L\left(y_{k}^{*} ight)$	
	Pressure	on	k^{th} H-Rect	:=	Weight-Density of Fluid) \times (Depth)	=	$\delta h\left(y_{k}^{*} ight)$	
	Area	of	\boldsymbol{k}^{th} H-Rect	:=	$\left(\text{Length} \right) \times \left(\text{Width} \right)$	=	$L\left(y_{k}^{*}\right)\Delta y_{k}$	
	Fluid Force	of	k^{th} H-Rect	:=	$(Pressure) \times (Area)$	=	$\delta h\left(y_{k}^{*}\right) L\left(y_{k}^{*}\right) \Delta y_{k}$	
– Riemann Sum: Fluid force against end of reservoir $\approx F_N^* := \sum_{k=1}^N \delta h(y_k^*) L(y_k^*) \Delta y_k$								
- Integral: Fluid force against end of reservoir $= \lim_{N \to \infty} F_N^* = \int_{\text{bottom y-coord. of fluid}}^{\text{top y-coord. of fluid}} \delta h(y) L(y) dy$								
_								

• <u>REMARK:</u>

$$\star \text{ (Weight-Density)} = \text{ (Mass-Density)} \times \text{ (Acceleration of Gravity)} \qquad \qquad \delta = \rho g$$

©2013 Josh Engwer – Revised February 10, 2014

EX 6.5.10: A vertical plate is submerged in water and has the shape of an equilateral triangle with side length 6m orientated with a vertex at the top and a horizontal side at the bottom. The top of the plate is 2m below the water surface.

The Mass-Density of water $\rho = 1000 \text{ kg/m}^3$. The Acceleration of Gravity $g \approx 9.8 \text{ m/sec}^2$.

(a) Sketch & characterize the fluid & submerged vertical plate. (Pick appropriate coordinate system)

(b) Setup integral to find the fluid force against the vertical plate.

<u>EX 6.5.11</u>: Let both ends of a trough be vertical & shaped as the bottom-half of a circle of diameter 10 ft.

Suppose the trough is filled with gasoline 3 ft deep. (Weight-Density of gasoline $\delta = 42.0 \text{ lb/ft}^3$)

(a) Sketch & characterize the frontal view of one end of the trough. (Pick appropriate coordinate system)

(b) Setup integral to find the fluid force against one end of the trough.

• <u>CENTROIDS OF SIMPLE GEOMETRIC FIGURES</u>:

(Mass-Density $\rho = 1$)

- The centroid (\bar{x}, \bar{y}) of a **line segment** is its **midpoint**.
- The centroid (\bar{x}, \bar{y}) of a **rectangle** or **circle** or **ellipse** is its **geometric center**.
- the centroid $(\bar{x}, \bar{y}, \bar{z})$ of a cube or sphere or ellipsoid is its geometric center.

• MOMENTS ABOUT THE X-AXIS & Y-AXIS OF V-ALIGNED THIN PLATE (LAMINA):

 $- \underline{\text{SETUP:}} \text{ Given } f, g \in C[a, b] \text{ s.t. } f(x) \ge g(x) \quad \forall x \in [a, b] \quad (\text{i.e. curve } f \text{ lies above curve } g \text{ over } [a, b])$ Let R be the region bounded by curves y = f(x), y = g(x), and the lines x = a, x = b.

Lamina R is the thin plate with cross-section region R and uniform (constant) mass-density ρ .

- <u>TASK</u>: Find the moments about the *x*-axis & *y*-axis of lamina *R*.
- Let partition $\mathcal{P} := \{x_0, x_1, x_2, \dots, x_{N-1}, x_N\} \subset [a, b]$ be arbitrary. Let tags $\mathcal{T} := \{x_1^*, x_2^*, x_3^*, \dots, x_{N-1}^*, x_N^*\} \subset [a, b]$ be arbitrary.

– Key element: V-Rect

Mass	s-Density	of	Lamina	:=	(Mass per Area of Lamina)	≡	ho		
V	Vidth	of	k^{th} V-Rect	:=	(Length of k^{th} subinterval)	=	Δx_k		
L	length	of	k^{th} V-Rect	:=	(Top BC) - (Bottom BC)	=	$f\left(x_{k}^{*}\right)-g\left(x_{k}^{*}\right)$		
Ce	entroid	on	k^{th} V-Rect	:=	(Geometric Center of V-Rec	et) ≡	$(\bar{x}_k, \bar{y}_k) = (x_k^*, \frac{1}{2} [f(x_k^*) + g(x_k^*)])$		
]	Mass	of	k^{th} V-Rect	:=	$\left(\text{Density} \right) \times \left(\text{Area} \right)$	≡	$\Delta m_{k} = \rho \left[f\left(x_{k}^{*} \right) - g\left(x_{k}^{*} \right) \right] \Delta x_{k}$		
Moment	about y -axis	of	k^{th} V-Rect	:=	$\bar{x}_k \Delta m_k$	=	$\rho x_{k}^{*}\left[f\left(x_{k}^{*}\right)-g\left(x_{k}^{*}\right)\right]\Delta x_{k}$		
Moment	about x -axis	of	k^{th} V-Rect	:=	$\bar{y}_k \Delta m_k$	=	$\frac{1}{2}\rho\left(\left[f\left(x_{k}^{*}\right)\right]^{2}-\left[g\left(x_{k}^{*}\right)\right]^{2}\right)\Delta x_{k}$		
- Riemann Sum: Mass of lamina $R \approx m^* := \sum_{k=1}^{N} \Delta m_k = \sum_{k=1}^{N} \rho \left[f\left(x_k^*\right) - g\left(x_k^*\right) \right] \Delta x_k$									
Riemann	Sum: Momen	t abo	out y -axis of l	amina	$a R \approx M_y^* := \sum_{k=1}^{\infty} \bar{x}_k \Delta m_k = \sum_{k=1}^{\infty} \bar{x}_k \Delta m_k$	$\sum_{k=1}^{\infty} \rho x_k^* \left[f \right]$	$(x_k^*) - g(x_k^*)] \Delta x_k$		
Riemann Sum: Moment about <i>x</i> -axis of lamina $R \approx M_x^* := \sum_{k=1}^N \bar{y}_k \Delta m_k = \sum_{k=1}^N \frac{1}{2} \rho \Big(\left[f\left(x_k^*\right) \right]^2 - \left[g\left(x_k^*\right) \right]^2 \Big) \Delta x_k$									
- Integral: Mass of lamina $R \equiv m := \lim_{N \to \infty} m^* = \int_a^b \rho \left[f(x) - g(x) \right] dx$									
Integral: Moment about <i>y</i> -axis of lamina $R \equiv M_y := \lim_{N \to \infty} M_y^* = \int_a^b \rho x \left[f(x) - g(x) \right] dx$									
Integral: Moment about x-axis of lamina $R \equiv M_x := \lim_{N \to \infty} M_x^* = \int_a^b \frac{1}{2} \rho \Big([f(x)]^2 - [g(x)]^2 \Big) dx$									
Centroid of lamina $\mathbf{R} \equiv (\bar{x}, \bar{y}) = \left(\frac{M_y}{m}, \frac{M_x}{m}\right)$									

• <u>REMARKS</u>:

- If a lamina's density $\rho \neq 1$, then its centroid is sometimes referred to as its **center of mass**.

<u>EX 6.5.12</u>: Let lamina *R* be the region bounded by the curves $y = \frac{1}{x} \& 2x + 2y = 5$ and have uniform density $\rho > 0$.

(a) Sketch & characterize the lamina R.

(b) Setup integrals to compute: the mass of R, the moments about the x-axis & y-axis of R, the centroid of R.

EX 6.5.13: Let lamina R be the triangle with vertices (0,0), (0,1), and (3,2) and have uniform density $\rho > 0$.

(a) Sketch & characterize the lamina R.

(b) Setup integrals to compute: the mass of R, the moments about the x-axis & y-axis of R, the centroid of R.