WORK, FLUID FORCE, CENTROIDS: [SST 6.5]

- ELEMENTARY DEFINITION OF WORK:
- The work done by a constant force on an object moving it a constant distance along a straight line:
$-($ Work $)=($ Force $) \times($ Distance $)$
- WORK DONE BY A VARIABLE FORCE ALONG THE X-AXIS:
- SETUP: Given function $F \in C[a, b]$ s.t. $y=F(x)$.
- TASK: Find the work done by the variable force $F(x)$ in moving an object from $x=a$ to $x=b$
- Let partition $\mathcal{P}:=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{N-1}, x_{N}\right\} \subset[a, b]$ be arbitrary.

Let tags $\mathcal{T}:=\left\{x_{1}^{*}, x_{2}^{*}, x_{3}^{*}, \ldots, x_{N-1}^{*}, x_{N}^{*}\right\} \subset[a, b]$ be arbitrary.

- Key element: Subinterval $\left[x_{k-1}, x_{k}\right]$

Distance	of	$k^{t h}$ Subinterval	$:=\left(\right.$ Length of $k^{t h}$ subinterval $)$	$=\Delta x_{k}$
Force	along	$k^{t h}$ Subinterval	(Assuming Δx_{k} is small)	$\approx F\left(x_{k}^{*}\right)$
Work	along	$k^{t h}$ Subinterval	$:=($ Force $) \times($ Distance $)$	$=F\left(x_{k}^{*}\right) \Delta x_{k}$

- Work done by force $F(x)$ over $[a, b] \approx W_{N}^{*}:=\sum_{k=1}^{N} F\left(x_{k}^{*}\right) \Delta x_{k}$
- Work done by force $F(x)$ over $[a, b]=\lim _{N \rightarrow \infty} W_{N}^{*}=\int_{a}^{b} F(x) d x$

- WORK DONE BY A VARIABLE FORCE ALONG THE Y-AXIS:

- SETUP: Given function $G \in C[c, d]$ s.t. $x=G(y)$.
- TASK: Find the work done by the variable force $G(y)$ in moving an object from $y=c$ to $y=d$
- Let partition $\mathcal{P}:=\left\{y_{0}, y_{1}, y_{2}, \ldots, y_{N-1}, y_{N}\right\} \subset[c, d]$ be arbitrary.

Let tags $\mathcal{T}:=\left\{y_{1}^{*}, y_{2}^{*}, \ldots, y_{N-1}^{*}, y_{N}^{*}\right\} \subset[c, d]$ be arbitrary.

- Key element: Subinterval $\left[y_{k-1}, y_{k}\right]$

Distance	of	$k^{t h}$ Subinterval $:=\left(\right.$ Length of $k^{t h}$ subinterval $)$	$=\Delta y_{k}$	
Force	along	$k^{t h}$ Subinterval	(Assuming Δy_{k} is small)	$\approx F\left(y_{k}^{*}\right)$
Work	along	$k^{t h}$ Subinterval $:=($ Force $) \times($ Distance $)$	$=F\left(y_{k}^{*}\right) \Delta y_{k}$	

- Work done by force $G(y)$ over $[c, d] \approx W_{N}^{*}:=\sum_{k=1}^{N} G\left(y_{k}^{*}\right) \Delta y_{k}$
- Work done by force $G(y)$ over $[c, d]=\lim _{N \rightarrow \infty} W_{N}^{*}=\int_{c}^{d} G(y) d y$

- HOOKE'S LAW FOR SPRINGS:

- SETUP: Given spring with stiffness constant $k>0$ fixed at one end and freely move horizontally.
$-x \equiv$ distance from the spring's equilibrium position (AKA natural length).
- Hooke's Law: The restoring force $F(x)=k x$

- REMARKS:

- For physics problems, it's crucial to choose a sensible coordinate system.
- Be aware of the units of measure in work problems - conversions may be necessary:

Mass	Distance	Force	Work
kg	m	N	J
g	cm	dyne	erg
slug	ft	lb	$\mathrm{ft}-\mathrm{lb}$

EX 6.5.2: Find the work done if a force of 30 N is used to pull a block along the x-axis from $x=5 \mathrm{~km}$ to $x=25 \mathrm{~km}$.

EX 6.5.3: Find the work done if a force of 20 dynes is used to push an object along a line 5 m .

EX 6.5.4: Find the work done in lifting a 15 lb bag of rice 4 ft by the handles.

EX 6.5.5: Find the work done in lifting a 2 ton straight horizontal beam 1000 ft . (1 ton $=2000 \mathrm{lb}$)

EX 6.5.6: A particle is moved along the x-axis by a force of $F(x)=x^{4}$ lbs at a point $x \mathrm{ft}$ from the origin.
(a) Find the work done in moving the particle from a position of $x=2 \mathrm{ft}$ to $x=4 \mathrm{ft}$.
(b) Find the work done in moving the particle from the origin to a position of $x=3 \mathrm{ft}$.

EX 6.5.7: A spring has a natural length of 5 ft . Suppose a $10-\mathrm{lb}$ force will compress it a length of 3 ft .
(a) Find the stiffness constant, k.
(b) How much work is required to stretch the spring 4 ft from its natural length?
(c) How much work is required to compress the spring 3 ft from its natural length?
(a) A cable that weighs $2 \mathrm{lb} / \mathrm{ft}$ is used to lift 900 lb cart of coal up a mine shaft 600 ft deep. Find the work done.
(b) Suppose halfway through the lifting process the very bottom piece of cable attached to the cart snaps.

How much work was done until the cable snapped?

- SETUP: Tank with cross-sectional area $A(y)$ filled with fluid of weight-density δ.

TASK: Find the work done pumping fluid out of tank.

- Let partition $\mathcal{P}:=\left\{y_{0}, y_{1}, y_{2}, \ldots, y_{N-1}, y_{N}\right\}$ of fluid be arbitrary.

Let tags $\mathcal{T}:=\left\{y_{1}^{*}, y_{2}^{*}, y_{3}^{*}, \ldots, y_{N-1}^{*}, y_{N}^{*}\right\}$ of fluid be arbitrary.

- Key element: H-Slab (of fluid)

- Riemann Sum: Work done pumping fluid out of tank $\approx W_{N}^{*}:=\sum_{k=1}^{N} \delta A\left(y_{k}^{*}\right) h\left(y_{k}^{*}\right) \Delta y_{k}$
- Integral: Work done pumping fluid out of tank $=\lim _{N \rightarrow \infty} W_{N}^{*}=\int_{\text {bottom } y \text {-coord. of fluid }}^{\text {top } y \text {-coord. of fluid }} \delta A(y) h(y) d y$

- REMARKS:

- For physics problems, it's crucial to choose a sensible coordinate system.

VARIABLE	PHYSICAL QUANTITY	DEFINITION	TYPICAL UNITS
g	Acceleration of Gravity	Distance per square-time	$\mathrm{m} / \mathrm{sec}^{2}, \mathrm{ft} / \mathrm{sec}^{2}, \mathrm{mi}^{2} / \mathrm{hr}^{2}$
ρ	Mass-Density	Mass per Volume	$\mathrm{slugs} / \mathrm{ft}^{3}, \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{~g} / \mathrm{cm}^{3}$
δ	Weight-Density	Weight per Volume	$\mathrm{lb} / \mathrm{ft}^{3}, \mathrm{~N} / \mathrm{m}^{3}, \mathrm{dynes} / \mathrm{cm}^{3}$
F	Fluid Force	Pressure \times Area	$\mathrm{lbs}, \mathrm{N}, \mathrm{dynes}$
W	Work	Force \times Distance	$\mathrm{ft}-\mathrm{lb}, \mathrm{J}, \mathrm{ergs}$

$\star($ Weight-Density $)=($ Mass-Density $) \times($ Acceleration of Gravity $) \quad \delta=\rho g$

EX 6.5.9: A 10 m tank has the shape of a circular cone with the base on the ground and base radius 4 m .
The tank is filled with water up to 7 m in height.
A 6 m vertical spout is attached to the top of the tank (which is the apex of the cone).
NOTE: The mass-density of water is $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$ \& the acceleration of gravity is $g \approx 9.8 \mathrm{~m} / \mathrm{s}^{2}$.
(a) Sketch \& characterize the tank \& fluid. (Pick appropriate coordinate system)
(b) Setup integral to find the work required to empty the tank by pumping all the water out of the spout.

[^0]- FLUID FORCE AGAINST A THIN PLATE SUBMERGED HORIZONTALLY:
- SETUP: Thin plate of area A is submerged horizontally at depth h in a fluid of weight-density δ.
$-($ Fluid force $)=($ Pressure $) \times($ Area $) \Longrightarrow F=(\delta h) A$
- Fluid force does NOT depend on the shape or size of the container.

- FLUID FORCE AGAINST A THIN PLATE SUBMERGED VERTICALLY:

- SETUP: Thin plate submerged vertically in a fluid of weight-density δ.
- TASK: Find the fluid force against the thin plate.
- Let partition $\mathcal{P}:=\left\{y_{0}, y_{1}, y_{2}, \ldots, y_{N-1}, y_{N}\right\}$ of thin plate be arbitrary.

Let tags $\mathcal{T}:=\left\{y_{1}^{*}, y_{2}^{*}, y_{3}^{*}, \ldots, y_{N-1}^{*}, y_{N}^{*}\right\}$ of thin plate be arbitrary.

- Key element: H-Rect (of plate)

Weight-Density	of	Fluid	:=	(Weight per Volume of Fluid)	三	δ
Width	of	$k^{\text {th }}$ H-Rect	:=	(Length of $k^{\text {th }}$ subinterval)		Δy_{k}
Depth	of	$k^{\text {th }}$ H-Rect	:=	(y-coord. of Surface $)$ - (y-coord. of H-Slab $)$	$=$	$h\left(y_{k}^{*}\right)$
Length	of	$k^{\text {th }}$ H-Rect	:=	(Right BC of Plate) - (Left BC of Plate)	$=$	$L\left(y_{k}^{*}\right)$
Pressure	on	$k^{\text {th }}$ H-Rect	:=	(Weight-Density of Fluid) $\times($ Depth $)$	$=$	$\delta h\left(y_{k}^{*}\right)$
Area	of	$k^{\text {th }} \mathrm{H}$-Rect	:=	$($ Length $) \times($ Width $)$	$=$	$L\left(y_{k}^{*}\right) \Delta y_{k}$
Fluid Force	of	$k^{\text {th }} \mathrm{H}$-Rect		$\text { (Pressure) } \times(\text { Area })$	=	$\delta h\left(y_{k}^{*}\right) L\left(y_{k}^{*}\right) \Delta y_{k}$

- Riemann Sum: Fluid force against thin plate $\approx F_{N}^{*}:=\sum_{k=1}^{N} \delta h\left(y_{k}^{*}\right) L\left(y_{k}^{*}\right) \Delta y_{k}$
- Integral: Fluid force against thin plate $=\lim _{N \rightarrow \infty} F_{N}^{*}=\int_{\text {bottom } y \text {-coord. of plate }}^{\text {top } y \text {-coord. of plate }} \delta h(y) L(y) d y$

- FLUID FORCE AGAINST ONE (VERTICAL) END OF A RESERVOIR:

- SETUP: Reservoir is filled with fluid of weight-density δ.

TASK: Find the total fluid force against one end of the reservoir.

- Let partition $\mathcal{P}:=\left\{y_{0}, y_{1}, y_{2}, \ldots, y_{N-1}, y_{N}\right\}$ of fluid be arbitrary.

Let tags $\mathcal{T}:=\left\{y_{1}^{*}, y_{2}^{*}, y_{3}^{*}, \ldots, y_{N-1}^{*}, y_{N}^{*}\right\}$ of fluid be arbitrary.

- Key element: H-Rect (of fluid)

Weight-Density	of	Fluid	:	(Weight per Volume of Fluid)	\equiv	δ
Width	of	$k^{\text {th }}$ H-Rect	:=	(Length of $k^{\text {th }}$ subinterval)		Δy_{k}
Depth	of	$k^{\text {th }} \mathrm{H}$-Rect	:=	(y-coord. of Surface) - (y-coord. of H-Slab)	$=$	$h\left(y_{k}^{*}\right)$
Length	of	$k^{\text {th }} \mathrm{H}$-Rect	:=	(Right BC of Reservoir) - (Left BC of Reservoir)	$=$	$L\left(y_{k}^{*}\right)$
Pressure	on	$k^{\text {th }} \mathrm{H}$-Rect	$=$	(Weight-Density of Fluid) $\times($ Depth $)$	$=$	$\delta h\left(y_{k}^{*}\right)$
Area	of	$k^{\text {th }} \mathrm{H}$-Rect	:=	$($ Length $) \times($ Width $)$	$=$	$L\left(y_{k}^{*}\right) \Delta y_{k}$
Fluid Force	of	$k^{\text {th }} \mathrm{H}$-Rect	:	(Pressure) \times (Area)	$=$	$\delta h\left(y_{k}^{*}\right) L\left(y_{k}^{*}\right) \Delta y_{k}$

- Riemann Sum: Fluid force against end of reservoir $\approx F_{N}^{*}:=\sum_{k=1}^{N} \delta h\left(y_{k}^{*}\right) L\left(y_{k}^{*}\right) \Delta y_{k}$
- Integral: Fluid force against end of reservoir $=\lim _{N \rightarrow \infty} F_{N}^{*}=\int_{\text {bottom } y \text {-coord. of fluid }}^{\text {top } y \text {-coord. of fluid }} \delta h(y) L(y) d y$

- REMARK:

$\star($ Weight-Density $)=($ Mass-Density $) \times($ Acceleration of Gravity $) \quad \delta=\rho g$

EX 6.5.10: A vertical plate is submerged in water and has the shape of an equilateral triangle with side length 6 m orientated with a vertex at the top and a horizontal side at the bottom. The top of the plate is 2 m below the water surface.

The Mass-Density of water $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$. The Acceleration of Gravity $g \approx 9.8 \mathrm{~m} / \mathrm{sec}^{2}$.
(a) Sketch \& characterize the fluid \& submerged vertical plate. (Pick appropriate coordinate system)
(b) Setup integral to find the fluid force against the vertical plate.

Suppose the trough is filled with gasoline 3 ft deep. (Weight-Density of gasoline $\delta=42.0 \mathrm{lb} / \mathrm{ft}^{3}$)
(a) Sketch \& characterize the frontal view of one end of the trough. (Pick appropriate coordinate system)
(b) Setup integral to find the fluid force against one end of the trough.

- The centroid (\bar{x}, \bar{y}) of a line segment is its midpoint.
- The centroid (\bar{x}, \bar{y}) of a rectangle or circle or ellipse is its geometric center.
- the centroid $(\bar{x}, \bar{y}, \bar{z})$ of a cube or sphere or ellipsoid is its geometric center.

- MOMENTS ABOUT THE X-AXIS \& Y-AXIS OF V-ALIGNED THIN PLATE (LAMINA):

- SETUP: Given $f, g \in C[a, b]$ s.t. $f(x) \geq g(x) \quad \forall x \in[a, b] \quad$ (i.e. curve f lies above curve g over $[a, b]$)

Let R be the region bounded by curves $y=f(x), y=g(x)$, and the lines $x=a, x=b$.
Lamina R is the thin plate with cross-section region R and uniform (constant) mass-density ρ.
TASK: Find the moments about the x-axis \& y-axis of lamina R.

- Let partition $\mathcal{P}:=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{N-1}, x_{N}\right\} \subset[a, b]$ be arbitrary.

Let tags $\mathcal{T}:=\left\{x_{1}^{*}, x_{2}^{*}, x_{3}^{*}, \ldots, x_{N-1}^{*}, x_{N}^{*}\right\} \subset[a, b]$ be arbitrary.

- Key element: V-Rect

Mass-Density	of	Lamina	$:=($ Mass per Area of Lamina $)$	$\equiv \rho$
Width	of	$k^{t h}$ V-Rect	$:=\left(\right.$ Length of $k^{t h}$ subinterval $)$	$=\Delta x_{k}$
Length	of	$k^{t h}$ V-Rect $:=($ Top BC $)-($ Bottom BC $)$	$=f\left(x_{k}^{*}\right)-g\left(x_{k}^{*}\right)$	
Centroid	on	$k^{t h}$ V-Rect $:=($ Geometric Center of V-Rect $)$	$\equiv\left(\bar{x}_{k}, \bar{y}_{k}\right)=\left(x_{k}^{*}, \frac{1}{2}\left[f\left(x_{k}^{*}\right)+g\left(x_{k}^{*}\right)\right]\right)$	
Mass	of	$k^{t h}$ V-Rect $:=($ Density $) \times($ Area $)$	$\equiv \Delta m_{k}=\rho\left[f\left(x_{k}^{*}\right)-g\left(x_{k}^{*}\right)\right] \Delta x_{k}$	
Moment about y-axis	of	$k^{t h}$ V-Rect $:=\bar{x}_{k} \Delta m_{k}$	$=\rho x_{k}^{*}\left[f\left(x_{k}^{*}\right)-g\left(x_{k}^{*}\right)\right] \Delta x_{k}$	
Moment about x-axis	of	$k^{t h}$ V-Rect $:=\bar{y}_{k} \Delta m_{k}$	$=\frac{1}{2} \rho\left(\left[f\left(x_{k}^{*}\right)\right]^{2}-\left[g\left(x_{k}^{*}\right)\right]^{2}\right) \Delta x_{k}$	

- Riemann Sum: Mass of lamina $R \approx m^{*}:=\sum_{k=1}^{N} \Delta m_{k}=\sum_{k=1}^{N} \rho\left[f\left(x_{k}^{*}\right)-g\left(x_{k}^{*}\right)\right] \Delta x_{k}$

Riemann Sum: Moment about y-axis of lamina $R \approx M_{y}^{*}:=\sum_{k=1}^{N} \bar{x}_{k} \Delta m_{k}=\sum_{k=1}^{N} \rho x_{k}^{*}\left[f\left(x_{k}^{*}\right)-g\left(x_{k}^{*}\right)\right] \Delta x_{k}$
Riemann Sum: Moment about x-axis of lamina $R \approx M_{x}^{*}:=\sum_{k=1}^{N} \bar{y}_{k} \Delta m_{k}=\sum_{k=1}^{N} \frac{1}{2} \rho\left(\left[f\left(x_{k}^{*}\right)\right]^{2}-\left[g\left(x_{k}^{*}\right)\right]^{2}\right) \Delta x_{k}$

- Integral:

$$
\text { Mass of lamina } R \equiv m:=\lim _{N \rightarrow \infty} m^{*}=\int_{a}^{b} \rho[f(x)-g(x)] d x
$$

Integral: \square

Integral:

$$
\text { Moment about } x \text {-axis of lamina } R \equiv M_{x}:=\lim _{N \rightarrow \infty} M_{x}^{*}=\int_{a}^{b} \frac{1}{2} \rho\left([f(x)]^{2}-[g(x)]^{2}\right) d x
$$

Centroid of lamina $\mathrm{R} \equiv(\bar{x}, \bar{y})=\left(\frac{M_{y}}{m}, \frac{M_{x}}{m}\right)$

- REMARKS:

- If a lamina's density $\rho \neq 1$, then its centroid is sometimes referred to as its center of mass.

EX 6.5.12: Let lamina R be the region bounded by the curves $y=\frac{1}{x} \& 2 x+2 y=5$ and have uniform density $\rho>0$.
(a) Sketch \& characterize the lamina R.
(b) Setup integrals to compute: the mass of R, the moments about the x-axis \& y-axis of R, the centroid of R.

EX 6.5.13: Let lamina R be the triangle with vertices $(0,0),(0,1)$, and (3,2) and have uniform density $\rho>0$.
(a) Sketch \& characterize the lamina R.
(b) Setup integrals to compute: the mass of R, the moments about the x-axis \& y-axis of R, the centroid of R.

[^0]: © 2013 Josh Engwer - Revised February 10, 2014

