INTEGRATION BY PARTS: [SST 7.2]

• INTEGRATION BY PARTS (IBP):

- Recall: There's no general 'product rule' for integration.
- Integration by Parts is the next best thing to a 'product rule' for integration.
- <u>SETUP</u>: Let $u, v \in C^1[a, b]$ such that u, v are elementary functions of x. (i.e. not piecewise)
- DERIVATION:
 - * Recall the **product rule** for derivatives: $\frac{d}{dx}[uv] = v\frac{du}{dx} + u\frac{dv}{dx}$ $\implies d[uv] = v \ du + u \ dv$

$$\implies \int d [uv] = \int v \, du + \int u \, dv$$
$$\implies uv = \int v \, du + \int u \, dv$$

- $\boxed{\text{INDEFINITE INTEGRAL FORM: } \int u \, dv = uv \int v \, du}$
- DEFINITE INTEGRAL FORM: $\int_{a}^{b} u \, dv = \left[uv\right]_{x=a}^{x=b} \int_{a}^{b} v \, du$
- <u>WHAT THE FORMULA MEANS:</u>
 - * Premise: $\int u \, dv$ is hard to integrate.
 - * Change of variables: Pick function u & differential dv s.t. $\int v \, du$ is easy/easier to integrate.
 - $\ast\,$ Computation: Differentiate u to get du
 - * Computation: Integrate dv to get v. Inserting constant of integration (+C) is NOT necessary.
 - * WARNING: Choose u & dv wisely! Bad choices can cause $\int v \, du$ to be harder or impossible to integrate!
 - * REMARK: If the integral in question only involves **one function**, consider choosing dv = 1 dx.

• **STRATEGY FOR CHOOSING** *u* & *dv* **WISELY**:

- <u>LIPTE Heuristic</u>: Whichever function type comes first in the following list choose as u:

Letter	Function Type	Example Functions
\mathbf{L}	Logarithms	$\ln x, \log y, \log_8 t, \dots$
Ι	Inverse Trig	$\arcsin x, \arctan y, \operatorname{arcsec} t, \dots$
Р	Polynomials	$x, y^2, 5t^3, \ldots$
Т	Trig Functions	$\sin x, \tan \theta, \sec \omega, \dots$
\mathbf{E}	Exponentials	$e^x, 2^y, \left(\frac{1}{3}\right)^t, (-4)^x, \dots$

- If the integrand is a product of only rational functions and/or roots, IBP is likely not useful.

- What about **compositions**??
 - * <u>DEFINITION</u>: A function f is a **light composition** \iff f has the form f(ax + b), where $a, b \in \mathbb{R}$.

• EXAMPLES:
$$\sin(\pi\theta - 4), \frac{1}{2t-2}, \sqrt{2z-1}, \arctan(x\sqrt{5}), e^{7y+3}, (9w-8)^4, \dots$$

- * <u>DEFINITION</u>: A function f is a heavy composition $\iff f$ is NOT a light composition.
 - EXAMPLES: $\sin(2 \arccos x)$, $\frac{1}{\ln x}$, $\sqrt{e^y}$, $\arctan(1/x)$, $e^{\sqrt{t}}$, $\ln(\ln w)$, ...
- * For light compositions, perform integration by parts as usual, afterwards *u*-substitution may be necessary.
- * For heavy compositions, consider an appropriate *u*-substitution first, afterwards do integration by parts.

• TABULAR INTEGRATION:

- Is more efficient when several iterations of integration by parts are needed.
- Works best when u is either a **polynomial**, sine, or cosine.

<u>EX 7.2.2</u>: Evaluate $I = \int \omega \sin(2\omega) \ d\omega$.

<u>EX 7.2.3</u>: Evaluate $I = \int x^2 e^x dx$ using integration by parts.

<u>EX 7.2.4</u>: Evaluate $I = \int x^2 e^x dx$ using tabular integration.

<u>EX 7.2.5</u> Evaluate $I = \int e^{2x} \sin(3x) dx$ using integration by parts.

EX 7.2.6: Evaluate $I = \int e^{2x} \sin(3x) dx$ using tabular integration.

EX 7.2.7: Evaluate
$$I = \int_0^1 x^4 e^{-2x} dx$$
.

EX 7.2.8: Evaluate $I = \int_{1}^{e} t \ln t \, dt$.

<u>EX 7.2.9</u>: Evaluate $I = \int \sin(\ln x) dx$.

<u>EX 7.2.10</u>: Evaluate $I = \int \ln z \, dz$.

EX 7.2.11: Evaluate $I = \int_0^{1/\sqrt{2}} \arccos x \, dx$.

EX 7.2.12: Evaluate $I = \int \frac{\ln x}{x^2} dx$.

<u>EX 7.2.13</u> Evaluate $I = \int_{1}^{4} \sqrt{p} \ln p \ dp$.

©2013 Josh Engwer – Revised February 15, 2014

<u>EX 7.2.14</u>: Derive the reduction formula: $\int x^n e^x dx = x^n e^x - n \int x^{n-1} e^x dx$, where $n \in \mathbb{N}$.

<u>EX 7.2.15</u>: Derive the reduction formula: $\int (\ln t)^n dt = t (\ln t)^n - n \int (\ln t)^{n-1} dt$, where $n \in \mathbb{N}$.