- INTEGRATION BY PARTS (IBP):

- Recall: There's no general 'product rule' for integration.
- Integration by Parts is the next best thing to a 'product rule' for integration.
- SETUP: Let $u, v \in C^{1}[a, b]$ such that u, v are elementary functions of x. (i.e. not piecewise)
- DERIVATION:
* Recall the product rule for derivatives: $\frac{d}{d x}[u v]=v \frac{d u}{d x}+u \frac{d v}{d x}$
$\Longrightarrow d[u v]=v d u+u d v$
$\Longrightarrow \int d[u v]=\int v d u+\int u d v$
$\Longrightarrow u v=\int v d u+\int u d v$
INDEFINITE INTEGRAL FORM: $\int u d v=u v-\int v d u$
- DEFINITE INTEGRAL FORM: $\int_{a}^{b} u d v=[u v]_{x=a}^{x=b}-\int_{a}^{b} v d u$
- WHAT THE FORMULA MEANS:
* Premise: $\int u d v$ is hard to integrate.
* Change of variables: Pick function $u \&$ differential $d v$ s.t. $\int v d u$ is easy/easier to integrate.
* Computation: Differentiate u to get $d u$
* Computation: Integrate $d v$ to get v. Inserting constant of integration $(+C)$ is NOT necessary.
* WARNING: Choose $u \& d v$ wisely! Bad choices can cause $\int v d u$ to be harder or impossible to integrate!
* REMARK: If the integral in question only involves one function, consider choosing $d v=1 d x$.
- STRATEGY FOR CHOOSING $u \& d v$ WISELY:
- LIPTE Heuristic: Whichever function type comes first in the following list choose as u :

Letter	Function Type	Example Functions
\mathbf{L}	Logarithms	$\ln x, \log y, \log _{8} t, \ldots$
\mathbf{I}	Inverse Trig	$\arcsin x, \arctan y, \operatorname{arcsec} t, \ldots$
\mathbf{P}	Polynomials	$x, y^{2}, 5 t^{3}, \ldots$
\mathbf{T}	Trig Functions	$\sin x, \tan \theta, \sec \omega, \ldots$
\mathbf{E}	Exponentials	$e^{x}, 2^{y},\left(\frac{1}{3}\right)^{t},(-4)^{x}, \ldots$

- If the integrand is a product of only rational functions and/or roots, IBP is likely not useful.
- What about compositions??
* DEFINITION: A function f is a light composition $\Longleftrightarrow f$ has the form $f(a x+b)$, where $a, b \in \mathbb{R}$.
- EXAMPLES: $\sin (\pi \theta-4), \frac{1}{3 t-2}, \sqrt{2 z-1}, \arctan (x \sqrt{5}), e^{7 y+3},(9 w-8)^{4}, \ldots$
* DEFINITION: A function f is a heavy composition $\Longleftrightarrow f$ is NOT a light composition.

EXAMPLES: $\sin (2 \arccos x), \frac{1}{\ln x}, \sqrt{e^{y}}, \arctan (1 / x), e^{\sqrt{t}}, \ln (\ln w), \ldots$

* For light compositions, perform integration by parts as usual, afterwards u-substitution may be necessary.
* For heavy compositions, consider an appropriate u-substitution first, afterwards do integration by parts.

- TABULAR INTEGRATION:

- Is more efficient when several iterations of integration by parts are needed.
- Works best when u is either a polynomial, sine, or cosine.

EX 7.2.2: Evaluate $I=\int \omega \sin (2 \omega) d \omega$.

EX 7.2.3: Evaluate $I=\int x^{2} e^{x} d x$ using integration by parts.

EX 7.2.4: Evaluate $I=\int x^{2} e^{x} d x$ using tabular integration.

EX 7.2.6: Evaluate $I=\int e^{2 x} \sin (3 x) d x$ using tabular integration.

EX 7.2.7: Evaluate $I=\int_{0}^{1} x^{4} e^{-2 x} d x$.

EX 7.2.8: Evaluate $I=\int_{1}^{e} t \ln t d t$.

EX 7.2.9: Evaluate $I=\int \sin (\ln x) d x$.

EX 7.2.10: Evaluate $I=\int \ln z d z$.

EX 7.2.11: Evaluate $I=\int_{0}^{1 / \sqrt{2}} \arccos x d x$.

EX 7.2.12: Evaluate $I=\int \frac{\ln x}{x^{2}} d x$.

EX 7.2.13: Evaluate $I=\int_{1}^{4} \sqrt{p} \ln p d p$.

EX 7.2.14: Derive the reduction formula: $\int x^{n} e^{x} d x=x^{n} e^{x}-n \int x^{n-1} e^{x} d x$, where $n \in \mathbb{N}$.

EX 7.2.15: Derive the reduction formula: $\int(\ln t)^{n} d t=t(\ln t)^{n}-n \int(\ln t)^{n-1} d t$, where $n \in \mathbb{N}$.

