- Monomial Factoring: e.g. $8 x^{6}+2 x^{4}=2 x^{4}\left(4 x^{2}+1\right)$
- Factoring by Grouping: e.g. $x^{3}+3 x^{2}+9 x+27=x^{2}(x+3)+9(x+3)=\left(x^{2}+9\right)(x+3)$
- Difference of Squares: $A^{2}-B^{2}=(A+B)(A-B)$
- Difference of Cubes: $A^{3}-B^{3}=(A-B)\left(A^{2}+A B+B^{2}\right)$
- Sum of Cubes: $A^{3}+B^{3}=(A+B)\left(A^{2}-A B+B^{2}\right)$
- REMARK: In this section, all $5^{t h}$-degree or higher polynomials will be factored a priori.

- PARTIAL FRACTION DECOMPOSITION (PFD):

- TASK: Perform PFD on rational function $\frac{N(x)}{D(x)}$ where $N \& D$ are polynomials.
- Recall: The degree of a polynomial is the power of its highest-power term.
* e.g. $\operatorname{deg}\left[4 x^{3}-7 x^{2}+6 x-100\right]=3, \operatorname{deg}\left[2-x^{5}-x^{8}\right]=8, \operatorname{deg}[5 x]=1, \operatorname{deg}[17]=0$
- STEP 1: If $\operatorname{deg}[N(x)] \geq \operatorname{deg}[D(x)]$, then perform polynomial division:
$* \frac{N(x)}{D(x)}=Q(x)+\frac{R(x)}{D(x)}$, where $Q \& R$ are polynomials s.t. $\operatorname{deg}[R(x)]<\operatorname{deg}[D(x)]$.
- STEP 2: Completely factor the denominator $D(x)$:
* Linear Factors $(p x+q)^{m}$ where $m \in \mathbb{N}$ and $p, q \in \mathbb{R}$ s.t. $p \neq 0$.
* Irreducible Quadratics $\left(a x^{2}+b x^{2}+c\right)^{n}$ where $n \in \mathbb{N}$ and $a, b, c \in \mathbb{R}$ s.t $a \neq 0$.
- Irreducible quadratics cannot be factored into linear factors with real coefficients $\Longleftrightarrow b^{2}-4 a c<0$.
- Examples of irreducible quadratics: $x^{2}+x+1, x^{2}+1$
- Examples of reducible quadratics: $x^{2}-1=(x+1)(x-1), x^{2}+2 x+1=(x+1)^{2}, x^{2}-2 x-3=(x-3)(x+1)$
* For each linear factor $(p x+q)^{m}$, the PFD must include the sum:

$$
\frac{A_{1}}{(p x+q)}+\frac{A_{2}}{(p x+q)^{2}}+\cdots+\frac{A_{m}}{(p x+q)^{m}}, \text { where } A_{1}, A_{2}, \ldots, A_{m} \in \mathbb{R}
$$

* For each irreducible quadratic $\left(a x^{2}+b x^{2}+c\right)^{n}$, the PFD must include the sum:

$$
\frac{B_{1} x+C_{1}}{a x^{2}+b x+c}+\frac{B_{2} x+C_{2}}{\left(a x^{2}+b x+c\right)^{2}}+\cdots+\frac{B_{n} x+C_{n}}{\left(a x^{2}+b x+c\right)^{n}}, \text { where } B_{1}, B_{2}, \ldots, B_{n}, C_{1}, C_{2}, \ldots, C_{n} \in \mathbb{R}
$$

- STEP 3: In order to find the values of all the A_{k} 's, B_{k} 's, and/or C_{k} 's, one must setup \& solve a linear system.
- STEP 4: The resulting integrals are now simple to work with.
* For some integrals, you may need to change variables and/or complete the square.
- IMPORTANT REMARKS ABOUT FACTORING A GENERAL $n^{\text {th }}$-DEGREE POLYNOMIAL:
* Fundamental Theorem of Algebra (FTA): Every $n^{t h}$-degree polynomial with complex coefficients can be factored into n linear factors with complex coefficients, some of which may be repeated.
* Corollary to FTA: Every $n^{t h}$-degree polynomial with real coefficients can be factored into linears \& irreducible quadratics with real coefficients, some of which may be repeated.
* REMARK: The FTA \& this corollary merely asserts existence of such factorizations. They provide no systematic procedure to actually find such factorizations.
* Here are some seemingly simple-looking polynomials that are hard to factor into linears \& irreducible quadratics (you won't see these on the exams, so don't memorize them):

$$
\begin{aligned}
& \text {. e.g. } x^{4}+1=\left(x^{2}+\sqrt{2} x+1\right)\left(x^{2}-\sqrt{2} x+1\right) \\
& \text {. e.g. } x^{5}+1=(x+1)\left(x^{2}-\frac{1+\sqrt{5}}{2} x+1\right)\left(x^{2}-\frac{1-\sqrt{5}}{2} x+1\right) \\
& \text {. e.g. } x^{5}-1=(x-1)\left(x^{2}+\frac{1+\sqrt{5}}{2} x+1\right)\left(x^{2}+\frac{1-\sqrt{5}}{2} x+1\right) \\
& \text {. e.g. } x^{6}+1=\left(x^{2}+1\right)\left(x^{2}+\sqrt{3} x+1\right)\left(x^{2}-\sqrt{3} x+1\right) \\
& \text {. e.g. } x^{6}-1=(x+1)(x-1)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)
\end{aligned}
$$

EX 7.4.1: Evaluate $I=\int \frac{x^{3}+2 x^{2}+x+1}{x^{2}+6 x} d x$.

EX 7.4.2: Evaluate $I=\int \frac{1}{x^{2}+x-2} d x$.

EX 7.4.3: Evaluate $I=\int \frac{3-t}{t^{2}+2 t+1} d t$.

EX 7.4.4: Evaluate $I=\int \frac{1}{x(x-1)(6 x-3)} d x$.

EX 7.4.5: Evaluate $I=\int \frac{1}{\left(x^{2}+1\right)\left(x^{2}+2\right)} d x$.

EX 7.4.6: Evaluate $I=\int \frac{x+2}{x\left(x^{2}-x-1\right)} d x$.

EX 7.4.7: Evaluate $I=\int \frac{\cos \theta}{\sin ^{2} \theta+\sin \theta} d \theta$.

EX 7.4.8: Evaluate $I=\int \frac{1}{1-\sqrt{x}} d x$.

EX 7.4.9 Evaluate $I=\int \frac{1}{\sqrt{x}-\sqrt[3]{x}} d x$.

