INTEGRATION: PARTIAL FRACTIONS [SST 7.4]

• **REVIEW OF FACTORING POLYNOMIALS:**

- Monomial Factoring: e.g. $8x^{6} + 2x^{4} = 2x^{4}(4x^{2} + 1)$
- Factoring by Grouping: e.g. $x^3 + 3x^2 + 9x + 27 = x^2(x+3) + 9(x+3) = (x^2+9)(x+3)$
- Difference of Squares: $A^2 B^2 = (A + B)(A B)$
- Difference of Cubes: $A^3 B^3 = (A B)(A^2 + AB + B^2)$
- Sum of Cubes: $A^3 + B^3 = (A + B)(A^2 AB + B^2)$
- REMARK: In this section, all 5th-degree or higher polynomials will be factored a priori.

• PARTIAL FRACTION DECOMPOSITION (PFD):

- <u>TASK</u>: Perform **PFD** on rational function $\frac{N(x)}{D(x)}$ where N & D are polynomials.
- Recall: The degree of a polynomial is the power of its highest-power term.

* e.g.
$$\deg[4x^3 - 7x^2 + 6x - 100] = 3$$
, $\deg[2 - x^5 - x^8] = 8$, $\deg[5x] = 1$, $\deg[17] = 0$

- STEP 1: If $deg[N(x)] \ge deg[D(x)]$, then perform **polynomial division**:

$$\frac{N(x)}{D(x)} = Q(x) + \frac{R(x)}{D(x)}$$
, where Q & R are polynomials s.t. $\deg[R(x)] < \deg[D(x)]$

- STEP 2: Completely factor the **denominator** D(x):
 - * Linear Factors $(px+q)^m$ where $m \in \mathbb{N}$ and $p, q \in \mathbb{R}$ s.t. $p \neq 0$.
 - * Irreducible Quadratics $(ax^2 + bx^2 + c)^n$ where $n \in \mathbb{N}$ and $a, b, c \in \mathbb{R}$ s.t $a \neq 0$.
 - · Irreducible quadratics cannot be factored into linear factors with real coefficients $\iff b^2 4ac < 0.$
 - · Examples of irreducible quadratics: $x^2 + x + 1$, $x^2 + 1$
 - Examples of reducible quadratics: $x^2 1 = (x+1)(x-1), x^2 + 2x + 1 = (x+1)^2, x^2 2x 3 = (x-3)(x+1)$
 - * For each **linear factor** $(px + q)^m$, the PFD must include the sum:

$$\frac{A_1}{(px+q)} + \frac{A_2}{(px+q)^2} + \dots + \frac{A_m}{(px+q)^m}, \text{ where } A_1, A_2, \dots, A_m \in \mathbb{R}$$

* For each **irreducible quadratic** $(ax^2 + bx^2 + c)^n$, the PFD must include the sum: $B_1x + C_1$ $B_2x + C_2$ $B_1x + C_2$

$$\frac{B_1x + C_1}{ax^2 + bx + c} + \frac{B_2x + C_2}{(ax^2 + bx + c)^2} + \dots + \frac{B_nx + C_n}{(ax^2 + bx + c)^n}, \text{ where } B_1, B_2, \dots, B_n, C_1, C_2, \dots, C_n \in \mathbb{R}$$

- STEP 3: In order to find the values of all the A_k 's, B_k 's, and/or C_k 's, one must setup & solve a linear system.
- STEP 4: The resulting integrals are now simple to work with.

* For some integrals, you may need to change variables and/or complete the square.

- IMPORTANT REMARKS ABOUT FACTORING A GENERAL n^{th} -DEGREE POLYNOMIAL:
 - * Fundamental Theorem of Algebra (FTA): Every n^{th} -degree polynomial with complex coefficients can be factored into n linear factors with complex coefficients, some of which may be repeated.
 - * Corollary to FTA: Every *n*th-degree polynomial with real coefficients can be factored into linears & irreducible quadratics with real coefficients, some of which may be repeated.
 - * **REMARK:** The FTA & this corollary merely asserts **existence of such factorizations**. They provide **no** systematic procedure to actually find such factorizations.
 - * Here are some seemingly simple-looking polynomials that are hard to factor into linears & irreducible quadratics (you won't see these on the exams, so don't memorize them):

$$\begin{array}{l} \cdot \text{ e.g. } x^4 + 1 = \left(x^2 + \sqrt{2}x + 1\right) \left(x^2 - \sqrt{2}x + 1\right) \\ \cdot \text{ e.g. } x^5 + 1 = \left(x + 1\right) \left(x^2 - \frac{1 + \sqrt{5}}{2}x + 1\right) \left(x^2 - \frac{1 - \sqrt{5}}{2}x + 1\right) \\ \cdot \text{ e.g. } x^5 - 1 = \left(x - 1\right) \left(x^2 + \frac{1 + \sqrt{5}}{2}x + 1\right) \left(x^2 + \frac{1 - \sqrt{5}}{2}x + 1\right) \\ \cdot \text{ e.g. } x^6 + 1 = \left(x^2 + 1\right) \left(x^2 + \sqrt{3}x + 1\right) \left(x^2 - \sqrt{3}x + 1\right) \\ \cdot \text{ e.g. } x^6 - 1 = \left(x + 1\right) \left(x - 1\right) \left(x^2 + x + 1\right) \left(x^2 - x + 1\right) \end{array}$$

^{©2013} Josh Engwer – Revised February 15, 2014

EX 7.4.1: Evaluate
$$I = \int \frac{x^3 + 2x^2 + x + 1}{x^2 + 6x} dx.$$

EX 7.4.2: Evaluate $I = \int \frac{1}{x^2 + x - 2} dx$.

<u>EX 7.4.3</u> Evaluate $I = \int \frac{3-t}{t^2+2t+1} dt$.

EX 7.4.4: Evaluate
$$I = \int \frac{1}{x(x-1)(6x-3)} dx$$
.

EX 7.4.5: Evaluate
$$I = \int \frac{1}{(x^2+1)(x^2+2)} dx.$$

EX 7.4.6: Evaluate
$$I = \int \frac{x+2}{x(x^2-x-1)} dx.$$

EX 7.4.7: Evaluate
$$I = \int \frac{\cos \theta}{\sin^2 \theta + \sin \theta} d\theta$$

EX 7.4.8: Evaluate
$$I = \int \frac{1}{1 - \sqrt{x}} dx$$
.

EX 7.4.9 Evaluate
$$I = \int \frac{1}{\sqrt{x} - \sqrt[3]{x}} dx$$
.