SEQUENCES [SST 8.1]

DEFINITIONS:

- So far in Calculus, a typical function f has domain $\text{Dom}(f) \subseteq \mathbb{R}$ and range $\text{Rng}(f) \subseteq \mathbb{R}$.
- A sequence $\{a_n\}_{n=1}^{\infty}$ is a function s.t. $\text{Dom}(\{a_n\}) = \mathbb{N} := \{1, 2, 3, 4, 5, \dots\}$ and $\text{Rng}(\{a_n\}) \subset \mathbb{R}$.
- NOTATION: Sequence is denoted either $\{a_n\}_{n=1}^{\infty}$ or $\{a_n\}$ or $\{a_1, a_2, a_3, a_4, a_5, \cdots\}$, where the **index** $n \in \mathbb{N}$.
- A sequence $\{a_n\}_{n=1}^{\infty}$ has the limit L, denoted $\lim_{n \to \infty} a_n = L$, if successive terms approach L as n increases without bound.
- If $\lim_{n \to \infty} a_n$ exists, we say the sequence **converges**. Otherwise, the sequence **diverges**.

LIMIT LAWS FOR SEQUENCES: Let $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ be convergent sequences and $k \in \mathbb{R}$. Then:

 $(SQ.0) \lim_{n \to \infty} k = k$ $(SQ.1) \lim_{n \to \infty} ka_n = k \lim_{n \to \infty} a_n$ $(SQ.2) \lim_{n \to \infty} (a_n \pm b_n) = \lim_{n \to \infty} a_n \pm \lim_{n \to \infty}$ $(SQ.3) \lim_{n \to \infty} a_n b_n = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$ $(SQ.4) \lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n},$ $provided \lim_{n \to \infty} b_n \neq 0$ $(SQ.5) \lim_{n \to \infty} a_n^p = \left[\lim_{n \to \infty} a_n\right]^p,$ provided p > 0 $and a_n > 0 \quad \forall n \in \mathbb{N}$

CONTINUOUS FUNCTION THEOREM FOR SEQUENCES:

• Given sequence $\{a_n\}_{n=1}^{\infty}$ s.t. $\lim_{n \to \infty} a_n = L \in \mathbb{R}$ and function f continuous at L and defined at all a_n . Then, $\lim_{n \to \infty} f(a_n) = f\left(\lim_{n \to \infty} a_n\right) = f(L)$.

GENERATING CURVE THEOREM (GCT):

- Given sequence $\{a_n\}_{n=1}^{\infty}$ and function $f \in C[1,\infty)$ s.t. $a_n = f(n) \quad \forall n \in \mathbb{N}$. Then, $\lim_{x \to \infty} f(x) = L \in \mathbb{R} \implies \lim_{n \to \infty} a_n = L$.
- <u>WARNING</u>: The <u>converse</u> is not true in general! That is, $\lim_{n \to \infty} a_n = L \implies \lim_{x \to \infty} f(x) = L \in \mathbb{R}$, in general. The GCT works best when the sequence contains no trig fcn's & no factorials.

SQUEEZE THEOREM FOR SEQUENCES (SQZ):

• Given sequences $\{a_n\}_{n=1}^{\infty}, \{b_n\}_{n=1}^{\infty}, \{c_n\}_{n=1}^{\infty}$ s.t. $a_n \leq b_n \leq c_n \quad \forall n \geq N$ for some index N. Then, $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L \in \mathbb{R} \implies \lim_{n \to \infty} b_n = L$

L'HÔPITAL'S RULE (LHOP):

- Let $f, g \in C^1(a, b)$ and $c \in (a, b)$ s.t. $g'(x) \neq 0 \quad \forall x \in (a, b)$ except possibly at c. If $\lim_{x \to c} \frac{f(x)}{g(x)} \stackrel{NS}{=} \frac{0}{0} \text{ OR } \pm \frac{\infty}{\infty}$, then $\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$
- **INDETERMINANT FORMS:** $\frac{0}{0}, \frac{\infty}{\infty}, 0 \cdot \infty, \infty \infty, 0^0, \infty^0, 1^\infty$ (∞ can be replaced with $-\infty$, except $\infty \infty$)

MONOTONICITY & BOUNDEDNESS OF SEQUENCES:

- Sequence $\{a_n\}$ is increasing if $a_n \le a_{n+1} \quad \forall n \in \mathbb{N}$. That is, $a_1 \le a_2 \le a_3 \le a_4 \le \cdots$ e.g. $\{n^3\} := (1, 8, 27, 64, 125, \cdots)$
- Sequence $\{a_n\}$ is decreasing if $a_n \ge a_{n+1} \quad \forall n \in \mathbb{N}$. That is, $a_1 \ge a_2 \ge a_3 \ge a_4 \ge \cdots$ e.g. $\{\frac{1}{n^2}\} = (1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \frac{1}{25}, \cdots)$
- Sequence $\{a_n\}$ is **monotone** if it's either increasing or decreasing.
- Sequence $\{a_n\}$ is bounded above if $\exists M \in \mathbb{R}$ s.t. $a_n \leq M \quad \forall n \in \mathbb{N}$. e.g. $\{\frac{1}{n}\}$ with M = 1.
- Sequence $\{a_n\}$ is bounded below if $\exists m \in \mathbb{R}$ s.t. $a_n \ge m \quad \forall n \in \mathbb{N}$. e.g. $\{\frac{1}{n}\}$ with m = 0.
- Sequence $\{a_n\}$ is **bounded** if it's both bounded above and bounded below. e.g. $\{\arctan n\}$ with $M = \pi/2$ and m = 0.

BOUNDED MONTONE CONVERGENCE THEOREM (BMCT): Every bounded monotone sequence converges.

- BCMT is mainly used to determine convergence of recursive sequences.
- Determining monotonicity & boundedness of **recursive sequences** requires rigorous analysis which is covered in an Advanced Calculus course (MATH 4350).

©2013 Josh Engwer - Revised March 2, 2014

EX 8.1.1: List the first five terms of the sequence
$$\left\{\frac{2n+1}{n+3}\right\}_{n=1}^{\infty}$$

<u>EX 8.1.2</u>: List the first five terms of the sequence $\{a_n\}_{n=1}^{\infty}$, where $a_n = (-1)^{n+1} \left(\frac{n}{n+1}\right)$.

<u>EX 8.1.3</u>: List the first five terms of the **recursive sequence** $\{F_n\}_{n=1}^{\infty}$ s.t. $\begin{cases} F_{n+2} = F_n + F_{n+1} \\ F_1 = 4 \\ F_2 = -3 \end{cases}$

EX 8.1.4: Find the limit of sequence
$$\left\{2 - \frac{3}{n+4}\right\}_{n=1}^{\infty}$$
. Does the sequence converge?

<u>EX 8.1.5</u>: Find the limit of sequence $\{a_n\}$ where $a_n = \frac{1+n}{4+\sqrt{n}}$. Does the sequence converge?

<u>EX 8.1.6</u> Find the limit of sequence $\{(-1)^n\}$. Does the sequence converge?

<u>EX 8.1.7</u> Find the limit of sequence $\left\{\sqrt{\frac{9n-1}{n+2}}\right\}_{n=1}^{\infty}$. Does the sequence converge?

<u>EX 8.1.8</u> Find the limit of sequence $\left\{\sqrt[n]{5}\right\}_{n=1}^{\infty}$. Does the sequence converge?

<u>EX 8.1.9</u> Find the limit of sequence $\{\sqrt[n]{n}\}_{n=1}^{\infty}$. Does the sequence converge?

<u>EX 8.1.10</u> Find the limit of sequence $\left\{\frac{n!}{n^n}\right\}_{n=1}^{\infty}$. Does the sequence converge?

©2013 Josh Engwer – Revised March 2, 2014

EX 8.1.11: Find the limit of sequence
$$\left\{\frac{(-1)^n \sin^7(0.7n^3\pi)}{n^2}\right\}_{n=1}^{\infty}$$
. Does the sequence converge?

<u>EX 8.1.12</u> Find the limit of sequence $\left\{\cos\left(\frac{\pi}{n}\right)\right\}_{n=1}^{\infty}$. Does the sequence converge?

<u>EX 8.1.13</u> Find the limit of sequence $\{\sin(n\pi)\}_{n=1}^{\infty}$. Does the sequence converge?

<u>EX 8.1.14</u>: Find the limit of sequence $\left\{\sin\left(\frac{n\pi}{2}\right)\right\}_{n=1}^{\infty}$. Does the sequence converge?

<u>EX 8.1.15</u> Find the limit of sequence $\left\{ \left(1 + \frac{2}{n}\right)^{3n} \right\}_{n=1}^{\infty}$. Does the sequence converge?

<u>EX 8.1.16</u> (a) Is the sequence $\{1 - n\}_{n=1}^{\infty}$ increasing? decreasing? bounded above? bounded below? (b) Does it converge?

<u>EX 8.1.17</u> (a) Is the sequence $\{(-1)^n - (-1)^{n+1}\}_{n=1}^{\infty}$ monotone? bounded? (b) Does it converge?