DEFINITIONS:

- So far in Calculus, a typical function f has domain $\operatorname{Dom}(f) \subseteq \mathbb{R}$ and range $\operatorname{Rng}(f) \subseteq \mathbb{R}$.
- A sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a function s.t. $\operatorname{Dom}\left(\left\{a_{n}\right\}\right)=\mathbb{N}:=\{1,2,3,4,5, \cdots\}$ and $\operatorname{Rng}\left(\left\{a_{n}\right\}\right) \subset \mathbb{R}$.
- NOTATION: Sequence is denoted either $\left\{a_{n}\right\}_{n=1}^{\infty}$ or $\left\{a_{n}\right\}$ or $\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \cdots\right)$, where the index $n \in \mathbb{N}$.
- A sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ has the limit L, denoted $\lim _{n \rightarrow \infty} a_{n}=L$, if successive terms approach L as n increases without bound.
- If $\lim _{n \rightarrow \infty} a_{n}$ exists, we say the sequence converges. Otherwise, the sequence diverges.

LIMIT LAWS FOR SEQUENCES: Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ be convergent sequences and $k \in \mathbb{R}$. Then:
(SQ.0) $\lim _{n \rightarrow \infty} k=k$
(SQ.1) $\lim _{n \rightarrow \infty} k a_{n}=k \lim _{n \rightarrow \infty} a_{n}$
(SQ.2) $\lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=\lim _{n \rightarrow \infty} a_{n} \pm \lim _{n \rightarrow \infty}$
(SQ.3) $\lim _{n \rightarrow \infty} a_{n} b_{n}=\lim _{n \rightarrow \infty} a_{n} \cdot \lim _{n \rightarrow \infty} b_{n}$
(SQ.4) $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}}$, provided $\lim _{n \rightarrow \infty} b_{n} \neq 0 \quad$ (SQ.5) $\lim _{n \rightarrow \infty} a_{n}^{p}=\left[\lim _{n \rightarrow \infty} a_{n}\right]^{p}$, provided $p>0$ and $a_{n}>0 \quad \forall n \in \mathbb{N}$

CONTINUOUS FUNCTION THEOREM FOR SEQUENCES:

- Given sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ s.t. $\lim _{n \rightarrow \infty} a_{n}=L \in \mathbb{R}$ and function f continuous at L and defined at all a_{n}.

Then, $\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f\left(\lim _{n \rightarrow \infty} a_{n}\right)=f(L)$.

GENERATING CURVE THEOREM (GCT):

- Given sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ and function $f \in C[1, \infty)$ s.t. $a_{n}=f(n) \forall n \in \mathbb{N}$.

Then, $\lim _{x \rightarrow \infty} f(x)=L \in \mathbb{R} \Longrightarrow \lim _{n \rightarrow \infty} a_{n}=L$.

- WARNING: The converse is not true in general! That is, $\lim _{n \rightarrow \infty} a_{n}=L \nRightarrow \lim _{x \rightarrow \infty} f(x)=L \in \mathbb{R}$, in general. The GCT works best when the sequence contains no trig fcn's \& no factorials.

SQUEEZE THEOREM FOR SEQUENCES (SQZ):

- Given sequences $\left\{a_{n}\right\}_{n=1}^{\infty},\left\{b_{n}\right\}_{n=1}^{\infty},\left\{c_{n}\right\}_{n=1}^{\infty}$ s.t. $a_{n} \leq b_{n} \leq c_{n} \forall n \geq N$ for some index N.

Then, $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L \in \mathbb{R} \Longrightarrow \lim _{n \rightarrow \infty} b_{n}=L$

L'HÔPITAL'S RULE (LHOP):

- Let $f, g \in C^{1}(a, b)$ and $c \in(a, b)$ s.t. $g^{\prime}(x) \neq 0 \forall x \in(a, b)$ except possibly at c.

If $\lim _{x \rightarrow c} \frac{f(x)}{g(x)} \stackrel{N S}{=} \frac{0}{0}$ OR $\pm \frac{\infty}{\infty}$, then $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}$

- INDETERMINANT FORMS: $\frac{0}{0}, \frac{\infty}{\infty}, 0 \cdot \infty, \infty-\infty, 0^{0}, \infty^{0}, 1^{\infty}(\infty$ can be replaced with $-\infty$, except $\infty-\infty)$

MONOTONICITY \& BOUNDEDNESS OF SEQUENCES:

- Sequence $\left\{a_{n}\right\}$ is increasing if $a_{n} \leq a_{n+1} \forall n \in \mathbb{N}$. That is, $a_{1} \leq a_{2} \leq a_{3} \leq a_{4} \leq \cdots$ e.g. $\left\{n^{3}\right\}:=(1,8,27,64,125, \cdots)$
- Sequence $\left\{a_{n}\right\}$ is decreasing if $a_{n} \geq a_{n+1} \forall n \in \mathbb{N}$. That is, $a_{1} \geq a_{2} \geq a_{3} \geq a_{4} \geq \cdots$ e.g. $\left\{\frac{1}{n^{2}}\right\}=\left(1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \frac{1}{25}, \cdots\right)$
- Sequence $\left\{a_{n}\right\}$ is monotone if it's either increasing or decreasing.
- Sequence $\left\{a_{n}\right\}$ is bounded above if $\exists M \in \mathbb{R}$ s.t. $a_{n} \leq M \quad \forall n \in \mathbb{N}$. e.g. $\left\{\frac{1}{n}\right\}$ with $M=1$.
- Sequence $\left\{a_{n}\right\}$ is bounded below if $\exists m \in \mathbb{R}$ s.t. $a_{n} \geq m \quad \forall n \in \mathbb{N}$. e.g. $\left\{\frac{1}{n}\right\}$ with $m=0$.
- Sequence $\left\{a_{n}\right\}$ is bounded if it's both bounded above and bounded below. e.g. $\{\arctan n\}$ with $M=\pi / 2$ and $m=0$.

BOUNDED MONTONE CONVERGENCE THEOREM (BMCT): Every bounded monotone sequence converges.

- BCMT is mainly used to determine convergence of recursive sequences.
- Determining monotonicity \& boundedness of recursive sequences requires rigorous analysis which is covered in an Advanced Calculus course (MATH 4350).
© 2013 Josh Engwer - Revised March 2, 2014

EX 8.1.1: List the first five terms of the sequence $\left\{\frac{2 n+1}{n+3}\right\}_{n=1}^{\infty}$.

EX 8.1.2: List the first five terms of the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$, where $a_{n}=(-1)^{n+1}\left(\frac{n}{n+1}\right)$.

EX 8.1.3: List the first five terms of the recursive sequence $\left\{F_{n}\right\}_{n=1}^{\infty}$ s.t. $\left\{\begin{array}{l}F_{n+2}=F_{n}+F_{n+1} \\ F_{1}=4 \\ F_{2}=-3\end{array}\right.$

EX 8.1.4: Find the limit of sequence $\left\{2-\frac{3}{n+4}\right\}_{n=1}^{\infty}$. Does the sequence converge?

EX 8.1.5: Find the limit of sequence $\left\{a_{n}\right\}$ where $a_{n}=\frac{1+n}{4+\sqrt{n}}$. Does the sequence converge?

EX 8.1.7: Find the limit of sequence $\left\{\sqrt{\frac{9 n-1}{n+2}}\right\}_{n=1}^{\infty}$.

EX 8.1.8: Find the limit of sequence $\{\sqrt[n]{5}\}_{n=1}^{\infty}$. Does the sequence converge?

EX 8.1.9: Find the limit of sequence $\{\sqrt[n]{n}\}_{n=1}^{\infty}$. Does the sequence converge?

EX 8.1.10: Find the limit of sequence $\left\{\frac{n!}{n^{n}}\right\}_{n=1}^{\infty}$. Does the sequence converge?

EX 8.1.11: Find the limit of sequence $\left\{\frac{(-1)^{n} \sin ^{7}\left(0.7 n^{3} \pi\right)}{n^{2}}\right\}_{n=1}^{\infty}$. Does the sequence converge?

EX 8.1.12: Find the limit of sequence $\left\{\cos \left(\frac{\pi}{n}\right)\right\}_{n=1}^{\infty}$. Does the sequence converge?

EX 8.1.13: Find the limit of sequence $\{\sin (n \pi)\}_{n=1}^{\infty}$. Does the sequence converge?

EX 8.1.14: Find the limit of sequence $\left\{\sin \left(\frac{n \pi}{2}\right)\right\}_{n=1}^{\infty}$. Does the sequence converge?

EX 8.1.15: Find the limit of sequence $\left\{\left(1+\frac{2}{n}\right)^{3 n}\right\}_{n=1}^{\infty}$. Does the sequence converge?

EX 8.1.16: (a) Is the sequence $\{1-n\}_{n=1}^{\infty}$ increasing? decreasing? bounded above? bounded below? (b) Does it converge?

EX 8.1.17: (a) Is the sequence $\left\{(-1)^{n}-(-1)^{n+1}\right\}_{n=1}^{\infty}$ monotone? bounded? (b) Does it converge?

