INFINITE SERIES: GEOMETRIC SERIES & TELESCOPING SERIES [SST 8.2]

<u>DEFINITIONS</u>: Let $\{a_n\}_{n=N}^{\infty}$ (where $N \in \mathbb{Z}$) be a sequence. That is, $\text{Dom}(\{a_n\}) \subset \mathbb{Z}$ and $\text{Rng}(\{a_n\}) \subset \mathbb{R}$.

- The n^{th} partial sum is defined by: $S_n = \sum_{k=1}^n a_k$. e.g. The 5th partial sum is $S_5 = a_1 + a_2 + a_3 + a_4 + a_5$.
- An infinite series $\sum_{k=N}^{\infty} a_k = a_N + a_{N+1} + a_{N+2} + \cdots$ is a sequence of partial sums $\{S_n\}_{n=N}^{\infty}$ where $S_n := \sum_{k=1}^n a_k$.

- The RHS of $\sum_{k=N}^{\infty} a_k = a_N + a_{N+1} + a_{N+2} + \cdots$ is called the **series expansion**. The LHS is called the **closed form**.

- k is called the **index** of the series $\sum_{k=N}^{\infty} a_k$.
 - Any index can be used: $\sum_{i=N}^{\infty} a_i = \sum_{j=N}^{\infty} a_j = \sum_{k=N}^{\infty} a_k = \sum_{n=N}^{\infty} a_n = \sum_{\alpha=N}^{\infty} a_\alpha = \sum_{\omega=N}^{\infty} a_\omega.$
 - Similarly with definite integrals: $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(y) dy = \int_{a}^{b} f(z) dz = \int_{a}^{b} f(\alpha) d\alpha = \int_{a}^{b} f(\omega) d\omega$
- We'll <u>never</u> consider finite series, $\sum_{k=N}^{M} a_k$, as Calculus is not necessary in computing or analysing them.

- Thus going forward, any mention of just "series" means "infinite series".

SERIES CONVERGENCE IS RELATED TO SEQUENCE CONVERGENCE:

• Series $\sum_{k=N}^{\infty} a_k$ converges \iff Sequence of partial sums $\{S_n\}_{n=N}^{\infty}$ converges. Otherwise, the series diverges.

<u>GENERAL PROPERTIES OF SERIES:</u> $(c, d \in \mathbb{R})$

• (SR.L) $\sum_{\substack{k=N\\\infty}}^{\infty} a_k$ and $\sum_{\substack{k=N\\\infty}}^{\infty} b_k$ both converge $\implies \sum_{\substack{k=N\\\infty}}^{\infty} (ca_k + db_k)$ converges $\implies \sum_{\substack{k=N\\\infty}}^{\infty} (ca_k + db_k) = c \sum_{\substack{k=N\\k=N}}^{\infty} a_k + d \sum_{\substack{k=N\\k=N}}^{\infty} b_k$

• Either
$$\sum_{k=N}^{\infty} a_k$$
 or $\sum_{k=N}^{\infty} b_k$ diverges $\implies \sum_{k=N}^{\infty} (ca_k + db_k)$ diverges

<u>ARITHMETIC SERIES:</u> $(a, b \in \mathbb{R})$

• (SR.A) Arithmetic series $\sum_{k=0}^{\infty} (ak+b)$ converges only when a = b = 0, otherwise it diverges.

GEOMETRIC SERIES:

- Geometric series has the form: $\sum_{k=0}^{\infty} ar^k = a + ar + ar^2 + ar^3 + ar^4 + ar^5 + \cdots$ where $a \neq 0$.
- (SR.G) $|r| < 1 \implies \sum_{k=0}^{\infty} ar^k$ converges $\implies \sum_{k=0}^{\infty} ar^k = \frac{a}{1-r}$ Otherwise, $|r| \ge 1 \implies \sum_{k=0}^{\infty} ar^k$ diverges $\left(a \ne 0\right)$
- Note that the index k must start at zero. If it doesn't, re-index:

$$- \text{ (IDX)} \quad \text{e.g.} \quad \sum_{k=-2}^{\infty} ar^{k} = ar^{-2} + ar^{-1} + \sum_{k=0}^{\infty} ar^{k}, \qquad \qquad \text{e.g.} \quad \sum_{k=3}^{\infty} ar^{k} \stackrel{CI-0}{=} -ar^{0} - ar^{1} - ar^{2} + \sum_{k=0}^{\infty} ar^{k}$$

TELESCOPING SERIES:

- (SR.T) A series is called a **telescoping series** if there is **internal cancellation of terms in the partial sums**.
- Basic Forms: $\sum_{k=N}^{\infty} [f(k) f(k+1)]$ or $\sum_{k=N}^{\infty} [f(k) f(k+1)]$, where f is a **function**.
- Useful tools: Partial Fraction Decomposition (PFD), Properties of Logarithms, Rationalizing Roots, Trig Identities.

©2013 Josh Engwer - Revised March 2, 2014

<u>EX 8.2.1:</u> Expand the first five terms of each series:

(a)
$$\sum_{k=-2}^{\infty} k^5 =$$
(b)
$$\sum_{j=1}^{\infty} \frac{1}{j^2} =$$
(c)
$$\sum_{n=0}^{\infty} (-1)^n \sin\left(\frac{n\pi}{2}\right) =$$

<u>EX 8.2.2</u> Write each series expansion in closed form (NOTE: Closed forms are not unique):

(a) $1^{2} + 2^{2} + 3^{2} + 4^{2} + 5^{2} + \dots =$ (b) $(-1) + 1 + 8 + 27 + 64 + \dots =$ (c) $7 - \sqrt{7} + 1 - \frac{1}{\sqrt{7}} + \frac{1}{7} + \dots =$

<u>EX 8.2.3</u> (a) Find the n^{th} partial sum, S_n , of the series $\sum_{k=1}^{\infty} (k+100)$. (b) Does the series converge?

EX 8.2.4: (a) Find the
$$n^{th}$$
 partial sum, S_n , of the series $\sum_{k=1}^{\infty} (-1)^k$. (b) Does the series converge?

EX 8.2.5: Does the series
$$\sum_{k=0}^{\infty} \frac{11}{(-3)^{k+2}}$$
 converge? If so, what's its sum?

EX 8.2.6: Does the series
$$\sum_{k=0}^{\infty} \frac{(-4)^k}{(-5)^{2k+1}}$$
 converge? If so, what's its sum?

EX 8.2.7 Does the series
$$\sum_{k=-3}^{\infty} \frac{1}{6^{k+1}}$$
 converge? If so, what's its sum?

EX 8.2.8 Does the series
$$\left(\frac{3}{2}\right)^4 + \left(\frac{3}{2}\right)^5 + \left(\frac{3}{2}\right)^6 + \left(\frac{3}{2}\right)^7 + \left(\frac{3}{2}\right)^8 + \cdots$$
 converge? If so, what's its sum?

EX 8.2.9 Does the series
$$\sum_{k=0}^{\infty} \left[7 \left(\frac{1}{2} \right)^k - 5 \left(\frac{2}{3} \right)^k \right]$$
 converge? If so, what's its sum?

EX 8.2.10 Does the series
$$\sum_{k=1}^{\infty} \frac{1+3^k}{2^k}$$
 converge? If so, what's its sum?

EX 8.2.11 Does the series
$$\sum_{k=5}^{\infty} \frac{1}{k(k+1)}$$
 converge? If so, what's its sum?

<u>EX 8.2.12</u> Does the series $\sum_{k=1}^{\infty} \left(e^{-k} - e^{-(k+1)} \right)$ converge? If so, what's its sum?

<u>EX 8.2.13</u> Does the series $\sum_{k=1}^{\infty} \ln\left(1 + \frac{1}{k}\right)$ converge? If so, what's its sum?

©2013 Josh Engwer – Revised March 2, 2014