INFINITE SERIES: GEOMETRIC SERIES \& TELESCOPING SERIES [SST 8.2]

DEFINITIONS: Let $\left\{a_{n}\right\}_{n=N}^{\infty}($ where $N \in \mathbb{Z})$ be a sequence. That is, $\operatorname{Dom}\left(\left\{a_{n}\right\}\right) \subset \mathbb{Z}$ and $\operatorname{Rng}\left(\left\{a_{n}\right\}\right) \subset \mathbb{R}$.

- The $n^{t h}$ partial sum is defined by: $S_{n}=\sum_{k=1}^{n} a_{k}$. e.g. The $5^{t h}$ partial sum is $S_{5}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}$.
- An infinite series $\sum_{k=N}^{\infty} a_{k}=a_{N}+a_{N+1}+a_{N+2}+\cdots$ is a sequence of partial sums $\left\{S_{n}\right\}_{n=N}^{\infty}$ where $S_{n}:=\sum_{k=1}^{n} a_{k}$.
- The RHS of $\sum_{k=N}^{\infty} a_{k}=a_{N}+a_{N+1}+a_{N+2}+\cdots$ is called the series expansion. The LHS is called the closed form.
- k is called the index of the series $\sum_{k=N}^{\infty} a_{k}$.
- Any index can be used: $\sum_{i=N}^{\infty} a_{i}=\sum_{j=N}^{\infty} a_{j}=\sum_{k=N}^{\infty} a_{k}=\sum_{n=N}^{\infty} a_{n}=\sum_{\alpha=N}^{\infty} a_{\alpha}=\sum_{\omega=N}^{\infty} a_{\omega}$.
- Similarly with definite integrals: $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(y) d y=\int_{a}^{b} f(z) d z=\int_{a}^{b} f(\alpha) d \alpha=\int_{a}^{b} f(\omega) d \omega$
- We'll never consider finite series, $\sum_{k=N}^{M} a_{k}$, as Calculus is not necessary in computing or analysing them.
- Thus going forward, any mention of just "series" means "infinite series".

SERIES CONVERGENCE IS RELATED TO SEQUENCE CONVERGENCE:

- Series $\sum_{k=N}^{\infty} a_{k}$ converges \Longleftrightarrow Sequence of partial sums $\left\{S_{n}\right\}_{n=N}^{\infty}$ converges. Otherwise, the series diverges.

GENERAL PROPERTIES OF SERIES: $\quad(c, d \in \mathbb{R})$

- (SR.L) $\sum_{k=N}^{\infty} a_{k}$ and $\sum_{k=N}^{\infty} b_{k}$ both converge $\Longrightarrow \sum_{k=N}^{\infty}\left(c a_{k}+d b_{k}\right)$ converges $\Longrightarrow \sum_{k=N}^{\infty}\left(c a_{k}+d b_{k}\right)=c \sum_{k=N}^{\infty} a_{k}+d \sum_{k=N}^{\infty} b_{k}$
- Either $\sum_{k=N}^{\infty} a_{k}$ or $\sum_{k=N}^{\infty} b_{k}$ diverges $\Longrightarrow \sum_{k=N}^{\infty}\left(c a_{k}+d b_{k}\right)$ diverges

ARITHMETIC SERIES: $\quad(a, b \in \mathbb{R})$

- (SR.A) Arithmetic series $\sum_{k=0}^{\infty}(a k+b)$ converges only when $a=b=0$, otherwise it diverges.

GEOMETRIC SERIES:

- Geometric series has the form: $\sum_{k=0}^{\infty} a r^{k}=a+a r+a r^{2}+a r^{3}+a r^{4}+a r^{5}+\cdots$ where $a \neq 0$.
- (SR.G) $|r|<1 \Longrightarrow \sum_{k=0}^{\infty} a r^{k}$ converges $\Longrightarrow \sum_{k=0}^{\infty} a r^{k}=\frac{a}{1-r} \quad$ Otherwise, $|r| \geq 1 \Longrightarrow \sum_{k=0}^{\infty} a r^{k}$ diverges $\quad(a \neq 0)$
- Note that the index k must start at zero. If it doesn't, re-index:

$$
-(\text { IDX }) \text { e.g. } \sum_{k=-2}^{\infty} a r^{k}=a r^{-2}+a r^{-1}+\sum_{k=0}^{\infty} a r^{k}, \quad \text { e.g. } \sum_{k=3}^{\infty} a r^{k} \stackrel{C I-0}{=}-a r^{0}-a r^{1}-a r^{2}+\sum_{k=0}^{\infty} a r^{k}
$$

TELESCOPING SERIES:

- (SR.T) A series is called a telescoping series if there is internal cancellation of terms in the partial sums.
- Basic Forms: $\sum_{k=N}^{\infty}[f(k)-f(k+1)] \quad$ or $\quad \sum_{k=N}^{\infty}[f(k)-f(k+1)]$, where f is a function.
- Useful tools: Partial Fraction Decomposition (PFD), Properties of Logarithms, Rationalizing Roots, Trig Identities.

EX 8.2.1: Expand the first five terms of each series:
(a) $\sum_{k=-2}^{\infty} k^{5}=$
(b) $\sum_{j=1}^{\infty} \frac{1}{j^{2}}=$
(c) $\sum_{n=0}^{\infty}(-1)^{n} \sin \left(\frac{n \pi}{2}\right)=$

EX 8.2.2: Write each series expansion in closed form (NOTE: Closed forms are not unique):
(a) $1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+\cdots=$
(b) $(-1)+1+8+27+64+\cdots=$
(c) $7-\sqrt{7}+1-\frac{1}{\sqrt{7}}+\frac{1}{7}+\cdots=$

EX 8.2.3: (a) Find the $n^{\text {th }}$ partial sum, S_{n}, of the series $\sum_{k=1}^{\infty}(k+100) .(\mathrm{b})$ Does the series converge?

EX 8.2.4: (a) Find the $n^{t h}$ partial sum, S_{n}, of the series $\sum_{k=1}^{\infty}(-1)^{k}$. (b) Does the series converge?

EX 8.2.5: Does the series $\sum_{k=0}^{\infty} \frac{11}{(-3)^{k+2}}$ converge? If so, what's its sum?

EX 8.2.6: Does the series $\sum_{k=0}^{\infty} \frac{(-4)^{k}}{(-5)^{2 k+1}}$ converge? If so, what's its sum?

EX 8.2.7 Does the series $\sum_{k=-3}^{\infty} \frac{1}{6^{k+1}}$ converge? If so, what's its sum?

EX 8.2.8 Does the series $\left(\frac{3}{2}\right)^{4}+\left(\frac{3}{2}\right)^{5}+\left(\frac{3}{2}\right)^{6}+\left(\frac{3}{2}\right)^{7}+\left(\frac{3}{2}\right)^{8}+\cdots$ converge? If so, what's its sum?

EX 8.2.9 Does the series $\sum_{k=0}^{\infty}\left[7\left(\frac{1}{2}\right)^{k}-5\left(\frac{2}{3}\right)^{k}\right]$ converge? If so, what's its sum?

EX 8.2.10 Does the series $\sum_{k=1}^{\infty} \frac{1+3^{k}}{2^{k}}$ converge? If so, what's its sum?

EX 8.2.11 Does the series $\sum_{k=5}^{\infty} \frac{1}{k(k+1)}$ converge? If so, what's its sum?

EX 8.2.12 Does the series $\sum_{k=1}^{\infty}\left(e^{-k}-e^{-(k+1)}\right)$ converge? If so, what's its sum?

EX 8.2.13 Does the series $\sum_{k=1}^{\infty} \ln \left(1+\frac{1}{k}\right)$ converge? If so, what's its sum?

