POSITIVE SERIES: RATIO TEST, ROOT TEST [SST 8.5]

RATIO TEST:	$\lim_{k \to \infty} \frac{a_{k+1}}{a_k} < 1 \implies \text{ positive series } \sum a_k \text{ converges.}$
	$\lim_{k \to \infty} \frac{a_{k+1}}{a_k} > 1 \implies \text{ positive series } \sum a_k \text{ diverges.}$
	$\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = \infty \implies \text{positive series } \sum a_k \text{ diverges.}$
	$\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = 1 \text{ or DNE} \implies \text{Ratio Test fails.}$

- KEY IDEA: The ratio $\frac{a_{k+1}}{a_k}$ measures one sense of "how fast the terms a_k decrease to zero."
- ADVANTAGES:
 - Involves taking a limit and simple division, so easy to use.
 - Works nicely with:
 - * factorials (e.g. k!)
 - * simple powers (e.g. k^3)
 - * simple exponentials (e.g. 2^k)
 - * product chains (e.g. $1 \cdot 3 \cdot 5 \cdots (2k-1)$).
- DISADVANTAGES:
 - Fails for many series.
 - Useless with many trig expressions since: $\lim_{k\to\infty}\sin k={\rm DNE}$
 - Tedious to use with most rational functions of polynomials. (e.g. $a_k = \frac{k^3 2k^2 + k + 1}{k^4 + k^3 + k^2 + 2}$

 $\lim_{k \to \infty} \cos k = \text{DNE}$

 $\lim_{k \to \infty} \sqrt[k]{a_k} < 1 \implies \text{ positive series } \sum a_k \text{ converges.}$ $\lim_{k \to \infty} \sqrt[k]{a_k} > 1 \implies \text{ positive series } \sum a_k \text{ diverges.}$ ROOT TEST: $\lim_{k \to \infty} \sqrt[k]{a_k} = \infty \implies \text{ positive series } \sum a_k \text{ diverges.}$ $\lim_{k \to \infty} \sqrt[k]{a_k} = 1 \text{ or DNE} \implies \text{Root Test fails.}$

- KEY IDEA: The root $\sqrt[k]{a_k}$ measures another sense of "how fast the terms a_k decrease to zero."
- ADVANTAGES:
 - Works nicely with:
 - * heavy powers of k (e.g. $[f(k)]^k$, where f is a continuous function)
 - * heavy exponentials (e.g. $9^{k^2}, 7^{\ln k}, 3^{\sin k}, \dots$)
- DISADVANTAGES:
 - Fails for many series.
 - Useless with **factorials** (e.g. k!).

USEFUL LIMITS:
$$\lim_{k \to 0} \sqrt[k]{2} = 1$$
 $\lim_{k \to 0} \sqrt[k]{k} = 1$

 $\lim_{k \to \infty} \sqrt{2} = 1 \qquad \lim_{k \to \infty} \sqrt[k]{k} = 1$ **FACTORIALS:** $\left(k \in \overline{\mathbb{Z}}_+ := \{0, 1, 2, 3, 4, 5, \cdots\}\right)$

- $k! := k(k-1)(k-2)\cdots(3)(2)(1)$ 0! := 1
- CAUTION: $(k+3)! \neq k! + 3$ or k! + 3!, rather (k+3)! = (k+3)(k+2)(k+1)k!
- CAUTION: $(3k)! \neq 3k!$ or 3!k!, rather $(3k)! = (3k)(3k-1)(3k-2)(3k-3)\cdots(k+2)(k+1)k!$
- CAUTION: $k!k! \neq (k^2)!$, rather $k!k! = (k!)^2$

©2013 Josh Engwer - Revised March 14, 2014

EX 8.5.1: Test the series
$$\sum_{k=1}^{\infty} \frac{k^2 2^{k+1}}{3^k}$$
 for convergence.

EX 8.5.2: Test the series
$$\sum_{k=1}^{\infty} \frac{6^k k! k!}{(2k)!}$$
 for convergence.

EX 8.5.3: Test the series
$$\sum_{k=1}^{\infty} \frac{k!}{1 \cdot 3 \cdot 5 \cdots (2k-1)}$$
 for convergence.

EX 8.5.4: Test the series
$$\sum_{k=1}^{\infty} \frac{e^{5k}}{k^k}$$
 for convergence.

EX 8.5.5: Test the series
$$\sum_{k=1}^{\infty} \frac{k^k}{5^{k^2}}$$
 for convergence.

EX 8.5.6: Test the series
$$\sum_{k=1}^{\infty} \left[\frac{k^2 e^k}{\ln\left(\pi + \frac{1}{k}\right)} \right]^k$$
 for convergence.

©2013 Josh Engwer – Revised March 14, 2014