ALTERNATING SERIES \& ABSOLUTE CONVERGENCE [SST 8.6]

ALTERNATING SERIES:

- An alternating series has one of the forms: $\sum(-1)^{k} a_{k}, \sum(-1)^{k+1} a_{k}$ or $\sum(-1)^{k-1} a_{k}$, where $a_{k} \geq 0 \quad \forall k$

Series	Expansion	Sign Pattern
$\sum_{k=0}^{\infty} a_{k}$	$a_{0}+a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+\cdots$	$++++++++\cdots$
$\sum_{k=0}^{\infty}(-1)^{k-1} a_{k}$	$-a_{0}+a_{1}-a_{2}+a_{3}-a_{4}+a_{5}-\cdots$	$-+-+-+-+\cdots$
$\sum_{k=0}^{\infty}(-1)^{k} a_{k}$	$a_{0}-a_{1}+a_{2}-a_{3}+a_{4}-a_{5}+\cdots$	$+-+-+-+-\cdots$
$\sum_{k=0}^{\infty}(-1)^{k+1} a_{k}$	$-a_{0}+a_{1}-a_{2}+a_{3}-a_{4}+a_{5}-\cdots$	$-+-+-+-+\cdots$
$\sum_{k=0}^{\infty}(-1)^{k(k+1) / 2} a_{k}$	$a_{0}-a_{1}-a_{2}+a_{3}+a_{4}-a_{5}-\cdots$	$+--++--+\cdots$

- Note that some powers of -1 can be simplified: $(-1)^{3 k+3}=(-1)^{3(k+1)}=\left[(-1)^{3}\right]^{k+1}=(-1)^{k+1}$
- But not all powers of -1 indicate that a series is alternating:
- e.g. $(-1)^{2 k+2}=(-1)^{2(k+1)}=\left[(-1)^{2}\right]^{k+1}=1^{k+1}=1 \Longrightarrow \sum(-1)^{2 k+2} a_{k}$ is a positive series (not alternating)
- e.g. $\sum 2^{-k-(-1)^{k}}$ is a positive series even though it has a $(-1)^{k}$ term.
- Other powers of -1 indicate that a series is neither positive nor alternating: $(-1)^{k(k+1) / 2}$ (see above \& EX 8.6.4)

ALTERNATING SERIES TEST:

Let $a_{k}>0 \quad \forall k$ s.t. $\lim _{k \rightarrow \infty} a_{k}=0$ AND $\left\{a_{k}\right\}$ is eventually decreasing.
Then alternating series $\sum(-1)^{k} a_{k}, \sum(-1)^{k+1} a_{k}$ and $\sum(-1)^{k-1} a_{k}$ all converge.

ABSOLUTE CONVERGENCE:

- Now, suppose $\sum a_{k}$ is not necessarily positive nor alternating. (see EX 8.6.4 \& EX 8.6.5)
- Series $\sum a_{k}$ is said to converge absolutely if the corresponding positive series $\sum\left|a_{k}\right|$ converges.
- Series $\sum a_{k}$ is said to converge conditionally if $\sum a_{k}$ converges, but $\sum\left|a_{k}\right|$ diverges.
- Especially if $\sum a_{k}$ is neither positive nor alternating, the only applicable test is the Absolute Convergence Test.
- If $\sum a_{k}$ is neither positive nor alternating and the Absolute Convergence Test fails, then $\sum a_{k}$ is essentially a graduate-level series, and will not be considered in Calculus II as very advanced methods (Dirichlet's Test, Abel's Test, ...) seen in Advanced Calculus and graduate courses are needed. e.g. $\sum_{k=1}^{\infty} \frac{\sin k}{k}$

ABSOLUTE CONVERGENCE TEST: Positive series $\sum\left|a_{k}\right|$ converges \Longrightarrow series $\sum a_{k}$ converges.

ABSOLUTE CONVERGENCE IMPLIES SERIES CAN BE REARRANGED:

- RECALL: Addition is commutative: $3+5=5+3$ and associative: $3+(5+7)=(3+5)+7$
- So, for finite series, the terms can be rearranged: e.g. $\sum_{k=1}^{3} k=1+2+3=1+3+2=2+3+1=3+2+1=6$
- An absolutely convergent series also can be rearranged:
e.g. $\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{2}}=-1+\frac{1}{4}-\frac{1}{9}+\frac{1}{16}-\frac{1}{25}+\frac{1}{36}-\frac{1}{49}+\cdots=\left(-1-\frac{1}{9}\right)+\left(\frac{1}{4}+\frac{1}{16}\right)+\left(-\frac{1}{25}-\frac{1}{49}\right)+\cdots$
- Rearranging a conditionally convergent series yields different sums:
e.g. $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots=\ln 2, \quad$ but $\left(1-\frac{1}{2}\right)-\frac{1}{4}+\left(\frac{1}{3}-\frac{1}{6}\right)-\frac{1}{8}+\cdots=\frac{1}{2} \ln 2$
- Rearranging a divergent series yields downright weird results:
e.g. $\sum_{k=1}^{\infty}(-1)^{k}=-1+1-1+1-1+\cdots$ diverges by oscillation, but $(-1+1)+(-1+1)+(-1+1)+\cdots=0$ and $(1+1-1)+(1+1-1)+(1+1-1)+\cdots=+\infty \quad$ and $(1-1-1)+(1-1-1)+(1-1-1)+\cdots=-\infty$

EX 8.6.1: Test the series $\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k}$ for convergence and absolute convergence.

EX 8.6.2: Test the series $\sum_{k=2}^{\infty}(-1)^{k+1}\left(\frac{6 k^{2}+4}{7 k^{2}-1}\right)^{1 / 3}$ for convergence and absolute convergence.

EX 8.6.3: Test the series $\sum_{k=3}^{\infty} \frac{(-1)^{k} e^{-3 k}}{k!\sqrt{k}}$ for convergence and absolute convergence.

EX 8.6.4: Test the series $\sum_{k=1}^{\infty} \frac{(-1)^{k(k+1) / 2}}{k^{4}}$ for convergence and absolute convergence.

EX 8.6.5: Test the series $\sum_{k=1}^{\infty} \frac{\cos (k \pi / 3)}{k!}$ for convergence and absolute convergence.

