DEFINITION:

- A power series has the form: $\sum_{k=0}^{\infty} a_{k}(x-c)^{k}=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+a_{3}(x-c)^{3}+\cdots$
- A power series with $c=0$ simplifies to: $\sum_{k=0}^{\infty} a_{k} x^{k}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots$
- A polynomial is a finite power series : e.g. $x^{3}-2 x^{2}+3 x-4=\sum_{k=0}^{\infty} a_{k} x^{k}$ with $\left\{\begin{array}{l}a_{0}=-4, a_{1}=3, a_{2}=-2, a_{3}=1 \\ a_{4}=a_{5}=a_{6}=a_{7}=\cdots=0\end{array}\right.$

CONVERGENCE OF A POWER SERIES:

- Given a power series $\sum_{k=0}^{\infty} a_{k}(x-c)^{k}$, exactly one of the following is true:

$\sum a_{k}(x-c)^{k}$ converges for all x	\Longleftrightarrow	\Longleftrightarrow set of convergence is \mathbb{R}	\Longleftrightarrow radius of conv. is ∞
$\sum a_{k}(x-c)^{k}$ converges only for $x=c$	\Longleftrightarrow	\Longleftrightarrow set of convergence is $\{c\}$	
$\sum a_{k}(x-c)^{k}$ converges $\forall x \in(c-R, c+R)$	\Longleftrightarrow	set of convergence is $(c-R, c+R)$	\Longleftrightarrow
$\sum a_{k}(x-c)^{k}$ converges $\forall x \in[c-R, c+R)$	\Longleftrightarrow	radius of conv. is 0	
$\sum a_{k}(x-c)^{k}$ converges $\forall x \in(c-R, c+R]$	\Longleftrightarrow	set of convergence is $[c-R, c+R)$	\Longleftrightarrow
radius of conv. is R			
$\sum a_{k}(x-c)^{k}$ converges $\forall x \in[c-R, c+R]$	\Longleftrightarrow	set of convergence is $[c-R, c+R]$	\Longleftrightarrow

NOTE: For the bottom four cases above, the power series converges absolutely on the open interval $(c-R, c+R)$.

- To find the radius of convergence, use the Ratio Test or Root Test on $\sum\left|a_{k}(x-c)^{k}\right|$:
- Ratio Test: solve the inequality $\lim _{k \rightarrow \infty}\left|\frac{a_{k+1}(x-c)^{k+1}}{a_{k}(x-c)^{k}}\right|<1$ for x
- Root Test: solve the inequality $\lim _{k \rightarrow \infty} \sqrt[k]{\left|a_{k}(x-c)^{k}\right|}<1$ for x
- If, upon simplifying, you get a true statement like $0<1$, then the radius of convergence $R=\infty$
- If, upon simplifying, you get a false statement like $3<1$, then the radius of convergence $R=0$
- To determine convergence on the boundary of interval $(c-R, c+R)$, that is, at $x=c-R$ and $x=c+R$,
test the series for convergence at each endpoint.

PROPERTIES OF A POWER SERIES:

- A power series $\sum_{k=0}^{\infty} a_{k}(x-c)^{k}$ with radius of convergence $R>0$:
- Is infinitely differentiable on its interval of absolute convergence $\Longleftrightarrow \sum a_{k}(x-c)^{k} \in C^{\infty}(c-R, c+R)$
- Can be differentiated term by term on its interval of absolute convergence $(c-R, c+R)$:

$$
f^{\prime}(x)=\frac{d}{d x}\left[\sum_{k=0}^{\infty} a_{k}(x-c)^{k}\right]=\sum_{k=0}^{\infty} \frac{d}{d x}\left[a_{k}(x-c)^{k}\right]=\sum_{k=1}^{\infty} k a_{k}(x-c)^{k-1}
$$

- Can be integrated term by term on its interval of absolute convergence $(c-R, c+R)$:

$$
\begin{aligned}
& \int f(x) d x=\int\left(\sum_{k=0}^{\infty} a_{k}(x-c)^{k}\right) d x=\sum_{k=0}^{\infty}\left(\int a_{k}(x-c)^{k} d x\right)=\sum_{k=0}^{\infty} \frac{a_{k}}{k+1}(x-c)^{k+1}+C \\
& \int_{a}^{b} f(x) d x=\int_{a}^{b}\left(\sum_{k=0}^{\infty} a_{k}(x-c)^{k}\right) d x=\left(\sum_{k=0}^{\infty} \int_{a}^{b} a_{k}(x-c)^{k} d x\right)=\sum_{k=0}^{\infty}\left[\frac{a_{k}}{k+1}(x-c)^{k+1}\right]_{x=a}^{x=b}
\end{aligned}
$$

- Can have its terms rearranged without changing its sum [SST 8.6]
- In a nutshell, a power series behaves like a polynomial on its interval of absolute convergence.
- Power series can represent elementary functions.
- This means we can now integrate nonelementary integrals such as $\int e^{x^{2}} d x \quad$ [SST 8.8]

EX 8.7.1: On what set does the series $\sum_{k=1}^{\infty} \frac{x^{k}}{k^{k}}$ converge? What is the radius of convergence?

EX 8.7.2: On what set does the series $\sum_{k=0}^{\infty} \sqrt[3]{k}(3 k)!x^{k}$ converge? What is the radius of convergence?

EX 8.7.3: On what set does the series $\sum_{k=1}^{\infty} \frac{(3 x)^{3 k}}{\sqrt{k}}$ converge? What is the radius of convergence?

EX 8.7.4: On what set does the series $\sum_{k=1}^{\infty} \frac{(\ln k)(x-2)^{k}}{k}$ converge? What is the radius of convergence?

EX 8.7.5: Define f by the power series: $f(x):=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\frac{1}{4!} x^{4}+\frac{1}{5!} x^{5}+\frac{1}{6!} x^{6}+\cdots$
(a) Find the set of convergence \& radius of convergence of f.
(b) Compute $f^{\prime}(x)$.
(c) Compute $\int_{0}^{x} f(t) d t$.
(d) Based on your answer in part (b), which elementary function must f be?
(e) Compute the sum of the series $2+\frac{1}{2}+\frac{1}{6}+\frac{1}{24}+\frac{1}{120}+\frac{1}{720}+\cdots$
(Notice that this series is neither geometric nor telescoping....)

EX 8.7.6: Define g by the power series: $g(x):=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\frac{x^{11}}{11!}+\cdots$
(a) Find the set of convergence \& radius of convergence of g.
(b) Compute $g^{\prime}(x)$.
(c) Compute $g^{\prime \prime}(x)$.
(d) Based on your answer in part (c), which elementary function must g be?
(e) Compute the sum of the series $\frac{\pi}{4}-\frac{\pi^{3}}{3!4^{3}}+\frac{\pi^{5}}{5!4^{5}}-\frac{\pi^{7}}{7!4^{7}}+\frac{\pi^{9}}{9!4^{9}}-\frac{\pi^{11}}{11!4^{11}}+\cdots$
(Notice that this series is neither geometric nor telescoping....)
(a) Using the fact that $\arctan x=\int_{0}^{x} \frac{d t}{1+t^{2}}$, find a power series representation for $\arctan x$.
(b) Find the set of convergence \& radius of convergence of the power series for arctan x.
(c) Compute the sum of the series $\frac{9}{5} \sqrt{3}-\frac{27}{7} \sqrt{3}+9 \sqrt{3}-\frac{243}{11} \sqrt{3}+\cdots$
(Notice that this series is neither geometric nor telescoping....)
(d) Find a series representation for π.

