- Every function $f \in C^{\infty}(c-R, c+R)$ has a unique Taylor series about $x=c$ of the form: $f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!}(x-c)^{k}=f(c)+\frac{f^{\prime}(c)}{1!}(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\frac{f^{\prime \prime \prime}(c)}{3!}(x-c)^{3}+\frac{f^{(4)}(c)}{4!}(x-c)^{4}+\cdots$ which is a special type of power series that converges absolutely to $f(x)$ for all $x \in(c-R, c+R)$ where R is the radius of convergence.
- NOTE: It's possible that $f(x)$ exists for x-values outside of the interval of convergence of its Taylor series.
- e.g. The Taylor series about $x=0$ for $\ln (1+x)$ converges for all $x \in(-1,1]$, yet $\ln (1+2)$ is defined!!
- i.e. A Taylor series for $f(x)$ is a very poor approximation to $f(x)$ for all x outside the interval of convergence.
- TERMINOLOGY: A Maclaurin series is just a Taylor series about $x=0$:

$$
f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k}=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\frac{f^{(4)}(0)}{4!} x^{4}+\cdots
$$

USEFUL TOOLS FOR FINDING A TAYLOR SERIES:

- Finding the derivatives $f(c), f^{\prime}(c), f^{\prime \prime}(c), f^{\prime \prime \prime}(c), f^{(4)}(c), \ldots$ (always available, but not always fast)
- Clever substitution into a known Taylor series
- Clever manipulation of a geometric series
- Differentiating a known Taylor series
- Integrating a known Taylor series
- Clever use of trig identities
- Multiplying a Taylor series by a monomial (single-term polynomial)
- Dividing a Taylor series by a monomial (single-term polynomial)
- Multiplying two Taylor series
- Dividing two Taylor series (this is subtle, so not to be considered here)
- Clever manipulation of a Binomial series (see below)

BINOMIAL SERIES:

- $(1+x)^{\alpha}=\sum_{k=0}^{\infty}\binom{\alpha}{k} x^{k}=1+\alpha x+\frac{\alpha(\alpha-1)}{2!} x^{2}+\frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^{3}+\cdots$ where $\alpha \in \mathbb{R}$ and $|x|<1$.

APPLICATIONS OF TAYLOR SERIES:

- Finding limits that otherwise would require far too many iterations of L'Hôpital's Rule
- Evaluation of nonelementary integrals
- Solution to advanced differential equations (not considered here)
- Polynomial approximation of a complicated function and its error analysis (not considered here)
- Forms a central foundation of the theory of functions of complex variables (not considered here)

EX 8.8.1: Find the first three nonzero terms in the Taylor series about $x=0$ for e^{x}.

EX 8.8.2: Find the first three nonzero terms in the Taylor series about $x=0$ for $\sin x$.

EX 8.8.3: Find the first three nonzero terms in the Taylor series about $x=1$ for $\ln x$.

EX 8.8.4: Find the first three nonzero terms in the Taylor series about $x=0$ for $e^{x^{2}}$.

EX 8.8.5: Find the first three nonzero terms in the Taylor series about $x=0$ for $x^{3} e^{x}$.

EX 8.8.6: Find the first three nonzero terms in the Taylor series about $x=0$ for $\cos x$.

EX 8.8.7: Find the first three nonzero terms in the Taylor series about $x=0$ for $2 \sin x \cos x$.

EX 8.8.8: Find the first three nonzero terms in the Taylor series about $x=0$ for $\frac{1}{1-x}$.

EX 8.8.9: Find the first three nonzero terms in the Taylor series about $x=0$ for $\frac{1}{(1-x)^{2}}$.

EX 8.8.10: Find the first three nonzero terms in the Taylor series about $x=0$ for $\frac{1}{1+x^{2}}$.

EX 8.8.11: Find the first three nonzero terms in the Taylor series about $x=0$ for $\arctan x$.

EX 8.8.13: Compute the limit $\lim _{x \rightarrow 0} \frac{\sin x-x+\frac{1}{6} x^{3}-\frac{1}{120} x^{5}}{x^{7}}$.

EX 8.8.14: Using Taylor series about $x=0$, compute the first three terms of $\int e^{x^{2}} d x$.

EX 8.8.15: Using Taylor series about $x=0$, compute the first three terms of $\int \frac{\sin x}{x} d x$.

EX 8.8.16: Using Binomial series, compute the first three terms of $\sqrt{1+x}$.

EX 8.8.17: Using Binomial series, compute the first three terms of $\sqrt[4]{3-2 x}$.

EX 8.8.18: Using Binomial series, compute the first three terms of $\frac{x^{5}}{\sqrt[3]{1-x^{2}}}$.

