DOT PRODUCT OF TWO VECTORS:

- In $\mathbb{R}^{2}, \mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$ and $\mathbf{w}=\left\langle w_{1}, w_{2}\right\rangle \Longrightarrow$ Dot product $\mathbf{v} \cdot \mathbf{w}=v_{1} w_{1}+v_{2} w_{2}$
- In $\mathbb{R}^{3}, \mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ and $\mathbf{w}=\left\langle w_{1}, w_{2}, w_{3}\right\rangle \Longrightarrow$ Dot product $\mathbf{v} \cdot \mathbf{w}=v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3}$
- Notice that the dot product of two vectors is a scalar!

PROPERTIES OF DOT PRODUCTS: \quad (Let vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in\left\{\mathbb{R}^{2}, \mathbb{R}^{3}\right\}$ and scalar $c \in \mathbb{R}$)

- $\mathbf{v} \cdot \mathbf{v}=\|\mathbf{v}\|^{2}$
- $\overrightarrow{\mathbf{0}} \cdot \mathbf{v}=\mathbf{v} \cdot \overrightarrow{\mathbf{0}}=0$
- $\mathbf{v} \cdot \mathbf{w}=\mathbf{w} \cdot \mathbf{v}$
- $c(\mathbf{v} \cdot \mathbf{w})=(c \mathbf{v}) \cdot \mathbf{w}=\mathbf{v} \cdot(c \mathbf{w})$
- $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$

ANGLE BETWEEN VECTORS:

- $\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos \left(\theta_{v w}\right)$, where the angle between the two vectors $\theta_{v w} \in[0, \pi]$ and $\mathbf{v}, \mathbf{w} \in\left\{\mathbb{R}^{2}, \mathbb{R}^{3}\right\}$
- Nonzero vectors \mathbf{v}, \mathbf{w} are orthogonal $\Longleftrightarrow \mathbf{v} \cdot \mathbf{w}=0$
- Nonzero vectors \mathbf{v}, \mathbf{w} are parallel $\Longleftrightarrow \mathbf{v}=t \mathbf{w}$ for some scalar $t \in \mathbb{R}$.

DIRECTION ANGLES \& DIRECTION COSINES:

- In \mathbb{R}^{2} :
$\left(\right.$ Here, vector $\left.\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle\right)$
- The direction angle θ of nonzero vector $\mathbf{v} \in \mathbb{R}^{2}$ is the smallest positive angle it makes with the positive x-axis.
- The direction cosine of nonzero vector $\mathbf{v} \in \mathbb{R}^{2}$ is the cosine of the direction angle : $\cos \theta$
- Hence, $\mathbf{v} \cdot \widehat{\mathbf{i}}=\|\mathbf{v}\|\|\widehat{\mathbf{i}}\| \cos \theta \Longrightarrow \cos \theta=\frac{\mathbf{v} \cdot \widehat{\mathbf{i}}}{\|\mathbf{v}\|\|\widehat{\mathbf{i}}\|}=\frac{v_{1}}{\|\mathbf{v}\|}$, where basis vector $\widehat{\mathbf{i}}=\langle 1,0\rangle$
- In $\mathbb{R}^{3}: \quad\left(\right.$ Here, vector $\left.\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle\right)$
- The direction angle α of nonzero vector $\mathbf{v} \in \mathbb{R}^{3}$ is the smallest positive angle it makes with the positive x-axis.
- The direction angle β of nonzero vector $\mathbf{v} \in \mathbb{R}^{3}$ is the smallest positive angle it makes with the positive y-axis.
- The direction angle γ of nonzero vector $\mathbf{v} \in \mathbb{R}^{3}$ is the smallest positive angle it makes with the positive z-axis.
- The direction cosines of nonzero vector $\mathbf{v} \in \mathbb{R}^{3}$ are: $\cos \alpha, \cos \beta, \cos \gamma$
- Hence, $\mathbf{v} \cdot \widehat{\mathbf{i}}=\|\mathbf{v}\|\|\widehat{\mathbf{i}}\| \cos \alpha \Longrightarrow \cos \alpha=\frac{\mathbf{v} \cdot \widehat{\mathbf{i}}}{\|\mathbf{v}\|\|\hat{\mathbf{i}}\|}=\frac{v_{1}}{\|\mathbf{v}\|}$, where basis vector $\widehat{\mathbf{i}}=\langle 1,0,0\rangle$
- Hence, $\mathbf{v} \cdot \widehat{\mathbf{j}}=\|\mathbf{v}\|\|\widehat{\mathbf{j}}\| \cos \beta \Longrightarrow \cos \beta=\frac{\mathbf{v} \cdot \widehat{\mathbf{j}}}{\|\mathbf{v}\|\|\hat{\mathbf{j}}\|}=\frac{v_{2}}{\|\mathbf{v}\|}$, where basis vector $\widehat{\mathbf{j}}=\langle 0,1,0\rangle$
- Hence, $\mathbf{v} \cdot \widehat{\mathbf{k}}=\|\mathbf{v}\|\|\widehat{\mathbf{k}}\| \cos \gamma \Longrightarrow \cos \gamma=\frac{\mathbf{v} \cdot \widehat{\mathbf{k}}}{\|\mathbf{v}\|\|\widehat{\mathbf{k}}\|}=\frac{v_{3}}{\|\mathbf{v}\|}$, where basis vector $\widehat{\mathbf{k}}=\langle 0,0,1\rangle$

PROJECTIONS:

- Vector projection of \mathbf{v} onto $\mathbf{w}: \operatorname{proj}_{\mathbf{w}} \mathbf{v}=\left(\frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}\right) \mathbf{w}$
- Scalar projection of \mathbf{v} onto $\mathbf{w}: \operatorname{comp}_{\mathbf{w}} \mathbf{v}=\left\|\operatorname{proj}_{\mathbf{w}} \mathbf{v}\right\|=\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{w}\|}$

WORK AS A DOT PRODUCT:

- The work W done by a constant force \mathbf{F} on an object moving along the line from point P to point Q is: $W=\mathbf{F} \cdot \mathbf{P Q}$

EX 9.3.1: (a) Find the dot product $\mathbf{v} \cdot \mathbf{w}$ if $\mathbf{v}=\langle 1,2\rangle$ and $\mathbf{w}=4 \widehat{\mathbf{i}}-2 \widehat{\mathbf{j}}$.
(c) Find the angle $\theta_{v w}$ between $\mathbf{v} \& \mathbf{w}$.

EX 9.3.2: (a) Find the dot product $\mathbf{v} \cdot \mathbf{w}$ if $\mathbf{v}=\langle 1,2,3\rangle$ and $\mathbf{w}=4 \widehat{\mathbf{i}}-5 \widehat{\mathbf{j}}-6 \widehat{\mathbf{k}}$. (b) Are \mathbf{v}, \mathbf{w} orthogonal? (c) Find the angle θ between $\mathbf{v} \& \mathbf{w}$.
(d) Are \mathbf{v}, \mathbf{w} parallel?

EX 9.3.3: Find scalar t such that vectors $\mathbf{v}=\langle 1,3, t\rangle$ and $\mathbf{w}=2 \widehat{t}+\widehat{\mathbf{j}}-4 \widehat{\mathbf{k}}$ are orthogonal.

EX 9.3.4: Find the scalar \& vector projections of $\mathbf{v}=\langle 1,2\rangle$ onto $\mathbf{w}=-3 \widehat{\mathbf{i}}+4 \widehat{\mathbf{j}}$.

EX 9.3.5: Find the scalar \& vector projections of $\mathbf{v}=\widehat{\mathbf{i}}+2 \widehat{\mathbf{j}}+3 \widehat{\mathbf{k}}$ onto $\mathbf{w}=\langle 3,-1,-1\rangle$.

EX 9.3.6: Find the direction cosines and the direction angles (in radians) of the vector $\mathbf{v}=\langle 1,2,3\rangle$.

EX 9.3.7: Find the work performed when the force $\mathbf{F}=\langle 1,2,3\rangle$ moves an object along a straight line from point $P(-2,3,4)$ to point $Q(8,-7,-6)$.

