Area Between Curves
 Calculus II

Josh Engwer

TTU

22 January 2014

Continuity \& Differentiability of a Function (Notation)

Definition

Given function $f(x)$ and set $S \subseteq \mathbb{R}$. Then:

$$
\begin{gathered}
f \in C(S) \Longleftrightarrow f \text { is continuous on set } S \\
f \in C^{1}(S) \Longleftrightarrow f, f^{\prime} \in C(S) \Longrightarrow f \text { is differentiable on set } S \\
f \in C^{2}(S) \Longleftrightarrow f, f^{\prime}, f^{\prime \prime} \in C(S) \Longrightarrow f \text { is twice-differentiable on set } S
\end{gathered}
$$

REMARK:

In general, f being differentiable on set S may not imply that $f \in C^{1}(S)$.
One such example is $f(x)=\left\{\begin{array}{cl}x^{2} \sin \left(\frac{1}{x}\right) & , \text { if } x \neq 0 \\ 0 & , \text { if } x=0\end{array}\right.$
Such "pathological functions" will not be considered in this course.
NOTATION:
$\mathbb{R} \equiv$ Interval $(-\infty, \infty) \equiv$ "The set of real numbers" \equiv "The real line"

Definite Integrals (Definition \& Interpretation)

Definition

(Riemann Sum Definition of an Integral)
Let $f \in C[a, b]$ where $[a, b]$ is a closed interval s.t. $-\infty<a<b<\infty$. Then:

$$
\int_{a}^{b} f(x) d x:=\lim _{N \rightarrow \infty} \sum_{k=1}^{N} f\left(x_{k}^{*}\right) \Delta x
$$

Proposition

(The Integral as an Area)
Let $f \in C[a, b]$ s.t. $f(x) \geq 0 \quad \forall x \in[a, b]$. Then

$$
\int_{a}^{b} f(x) d x
$$

represents the area of the region bounded by the curve $y=f(x)$, the x-axis, and the vertical lines $x=a \& x=b$.

Riemann Sums (Non-Uniform, Arbitrary Tags)

- \# Rectangles : $N=3$
- Partition: $\mathcal{P}=\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\}$
- Riemann Sum : $\sum_{k=1}^{N} f\left(x_{k}^{*}\right) \Delta x_{k}=f\left(x_{1}^{*}\right) \Delta x_{1}+f\left(x_{2}^{*}\right) \Delta x_{2}+f\left(x_{3}^{*}\right) \Delta x_{3}$

Riemann Sums (Uniform, Left-Endpoint Tags)

On the $k^{\text {th }}$ subinterval $\left[x_{k-1}, x_{k}\right]$, let $k^{t h} \operatorname{tag} x_{k}^{*}:=x_{k-1}$.

Riemann Sums (Uniform, Right-Endpoint Tags)

On the $k^{\text {th }}$ subinterval $\left[x_{k-1}, x_{k}\right]$, let $k^{\text {th }} \operatorname{tag} x_{k}^{*}:=x_{k}$.

Riemann Sums (Uniform, Midpoint Tags)

On the $k^{\text {th }}$ subinterval $\left[x_{k-1}, x_{k}\right]$, let $k^{\text {th }} \operatorname{tag} x_{k}^{*}:=\frac{1}{2}\left[x_{k-1}+x_{k}\right]$.

Riemann Sum Definition of an Integral (Demo)

(DEMO) RIEMANN SUM DEFINITION OF AN INTEGRAL (Click below):
RIEMANM SUMS by with enhancemento by Josh Engwer (2013) [CC-BY-SA]

subdivisions of a unit interval	2	integral of $\sin (3 . x)+1$ from 1 to 5	3.92323
error	-0.0149645	Riemann sum	3.9382

Boundary Curves (BC's) \& Boundary Points (BP’s)

A region in \mathbb{R}^{2} has boundary points (BP's) \& boundary curves (BC's). A boundary point (BP) is the intersection of two boundary curves (BC's).

NOTATION: $\mathbb{R}^{2} \equiv x y$-plane.

Boundary Curves (BC's) \& Boundary Points (BP’s)

Vertically-Simple (V-Simple) Regions

Vertically simple region

Definition

A region $D \subset \mathbb{R}^{2}$ is vertically-simple (V-Simple) if the region has only one top BC \& only one bottom BC.

Vertically Simple (V-Simple) Regions (Definition)

$$
\begin{aligned}
& y=g_{2}(x)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Vertically simple region }
\end{aligned}
$$

i.e., V-Simple regions can be swept vertically (with vertical lines [in blue]) where each vertical line intersects the same top BC \& same bottom BC.

Vertically-Simple (V-Simple) Regions

$$
\left.\begin{array}{r}
\left(a, g_{2}(a)\right) \\
\left(a, g_{1}(a)\right) \\
\text { Vertically simple region }
\end{array}\right\}\left(b, g_{1}(b)\right)
$$

Definition

A region $D \subset \mathbb{R}^{2}$ is vertically-simple (V-Simple) if the region has only one top $B C$ \& only one bottom $B C$.

Vertically-Simple (V-Simple) Regions

Definition

A region $D \subset \mathbb{R}^{2}$ is vertically-simple (V-Simple) if the region has only one top $B C$ \& only one bottom $B C$.

Horizontally-Simple (H-Simple) Regions

$$
x=h_{1}(y) \underbrace{\left(h_{1}(d), d\right)}_{y=c} \begin{gathered}
y=d \\
\text { Horizontally simple region }
\end{gathered}\left(h_{2}(d), d\right)
$$

Definition

A region $D \subset \mathbb{R}^{2}$ is horizontally-simple (H -Simple) if the region has only one left $B C$ \& only one right $B C$.

Horizontally Simple (H-Simple) Regions (Definition)

$$
x=h_{1}(y) \underbrace{\left(h_{1}(d), d\right)}_{y=c}
$$

i.e., H-Simple regions can be swept horizontally (w/ horizontal lines [in blue]) where each horizontal line intersects the same left $\mathbf{B C}$ \& same right BC.

Horizontally-Simple (H-Simple) Regions

Horizontally simple region

Definition

A region $D \subset \mathbb{R}^{2}$ is horizontally-simple (H -Simple) if the region has only one left $B C$ \& only one right $B C$.

Horizontally-Simple (H-Simple) Regions

Horizontally simple region

Definition

A region $D \subset \mathbb{R}^{2}$ is horizontally-simple (H -Simple) if the region has only one left $B C$ \& only one right $B C$.

A Region that's both V-Simple \& H-Simple

Area of a Region that's neither V-Simple nor H-Simple

Neither V-Simple Nor H-Simple Region

Area of a Region that's neither V-Simple nor H-Simple

Subdivide Region into V-Simple and H-Simple Regions

$$
\begin{gathered}
D=D_{1} \cup D_{2} \\
\operatorname{Area}(D)=\operatorname{Area}\left(D_{1}\right)+\operatorname{Area}\left(D_{2}\right)
\end{gathered}
$$

REMARK: Subdivide along a BP using a horizontal or vertical line.

Area of a V-Simple Region (Procedure)

Vertically simple region

Proposition

(Area of a V-Simple Region)
$\operatorname{Area}(D)=\int_{\text {smallest } x \text {-value in } D}^{\text {largest } x \text {-value in } D}[($ Top $B C)-($ Bottom $B C)] d x=\int_{a}^{b}\left[g_{2}(x)-g_{1}(x)\right] d x$

Area of a V-Simple Region (Procedure)

$$
\left.\begin{array}{c}
\left(a, g_{2}(a)\right) \\
\left(a, g_{1}(a)\right) \\
\text { Vertically simple region } \\
\vdots=g_{1}(x) \\
\vdots
\end{array}\right\}\left(b, g_{1}(b)\right)
$$

Proposition

(Area of a V-Simple Region)
Area $(D)=\int_{\text {smallest } x \text {-value in } D}^{\text {largest } x \text {-value in } D}[($ Top $B C)-($ Bottom $B C)] d x=\int_{a}^{b}\left[g_{2}(x)-g_{1}(x)\right] d x$

Area of a V-Simple Region (Procedure)

Vertically simple region

Proposition

(Area of a V-Simple Region)
Area $(D)=\int_{\text {smallest } x \text {-value in } D}^{\text {largest } x \text {-value in } D}[($ Top $B C)-($ Bottom $B C)] d x=\int_{a}^{b}\left[g_{2}(x)-g_{1}(x)\right] d x$

Area of a H-Simple Region (Procedure)

Horizontally simple region

Proposition

(Area of a H-Simple Region)
Area $(D)=\int_{\text {smallest } y \text {-value in } D}^{\text {largest } y \text {-value in } D}[($ Right $B C)-($ Left $B C)] d y=\int_{c}^{d}\left[h_{2}(y)-h_{1}(y)\right] d y$

Area of a H-Simple Region (Procedure)

Horizontally simple region

Proposition

(Area of a H-Simple Region)
Area $(D)=\int_{\text {smallest } y \text {-value in } D}^{\text {largest } y \text {-value in } D}[($ Right $B C)-($ Left $B C)] d y=\int_{c}^{d}\left[h_{2}(y)-h_{1}(y)\right] d y$

Area of a H-Simple Region (Procedure)

Horizontally simple region

Proposition

(Area of a H-Simple Region)
Area $(D)=\int_{\text {smallest } y \text {-value in } D}^{\text {largest } y \text {-value in } D}[($ Right $B C)-($ Left BC $)] d y=\int_{c}^{d}\left[h_{2}(y)-h_{1}(y)\right] d y$

Area Between Two Curves (Using V-Rects)

EXAMPLE: Let region R be bounded by curves $y=2 x, y=4-2 x^{2}, x=2$. Setup integral(s) to compute Area (R) using Vertical Rectangles (V-Rects).

Area Between Two Curves (Using V-Rects)

EXAMPLE: Let region R be bounded by curves $y=2 x, y=4-2 x^{2}, x=2$.

Sketch \& characterize region R (label BP's \& BC's in terms of x) Notice subregions R_{1}, R_{2} are each V -simple.

Area Between Two Curves (Using V-Rects)

EXAMPLE: Let region R be bounded by curves $y=2 x, y=4-2 x^{2}, x=2$.

Sketch \& characterize region R. (remove unnecessary clutter) Notice subregions R_{1}, R_{2} are each V-simple.

Area Between Two Curves (Using V-Rects)

Key Element: V-Rectangle (V-Rect)

Area Between Two Curves (Using V-Rects)

$$
k^{\text {th }} \text { V-Rect in } R_{1}: \begin{aligned}
& \text { Width }=\Delta x_{k} \\
& \text { Height }=(\text { Top BC })-(\text { Bottom BC }) \\
& =(\text { Height }) \times(\text { Width })
\end{aligned}
$$

Area Between Two Curves (Using V-Rects)

Width $=\Delta x_{k}$
$k^{\text {th }}$ V-Rect in $R_{1}: \frac{\text { Height }}{}=\left[4-2\left(x_{k}^{*}\right)^{2}\right]-2 x_{k}^{*}, ~\left(4-2 x_{k}^{*}-2\left(x_{k}^{*}\right)^{2}\right] \Delta x_{k}$
Riemann Sum: $\operatorname{Area}\left(R_{1}\right) \approx A_{N}^{*}=\sum_{k=1}^{N}\left[4-2 x_{k}^{*}-2\left(x_{k}^{*}\right)^{2}\right] \Delta x_{k}$

Area Between Two Curves (Using V-Rects)

Riemann Sum: $\operatorname{Area}\left(R_{1}\right) \approx A_{N}^{*}=\sum_{k=1}^{N}\left[4-2 x_{k}^{*}-2\left(x_{k}^{*}\right)^{2}\right] \Delta x_{k}$
Integral: Area $\left(R_{1}\right)=\lim _{N \rightarrow \infty} A_{N}^{*}=\int_{\text {smallest } x \text {-coord. in } R_{1}}^{\text {largest } x \text {-coord. in } R_{1}}\left(4-2 x-2 x^{2}\right) d x$

Area Between Two Curves (Using V-Rects)

Riemann Sum: $\operatorname{Area}\left(R_{1}\right) \approx A_{N}^{*}=\sum_{k=1}^{N}\left[4-2 x_{k}^{*}-2\left(x_{k}^{*}\right)^{2}\right] \Delta x_{k}$
Integral: $\operatorname{Area}\left(R_{1}\right)=\lim _{N \rightarrow \infty} A_{N}^{*}=\int_{-2}^{1}\left(4-2 x-2 x^{2}\right) d x$

Area Between Two Curves (Using V-Rects)

$$
k^{\text {th }} \text { V-Rect in } R_{2}: \begin{aligned}
& \text { Width }=\Delta x_{k} \\
& \text { Height }=(\text { Top BC })-(\text { Bottom BC }) \\
& \text { Area }=(\text { Height }) \times(\text { Width })
\end{aligned}
$$

Area Between Two Curves (Using V-Rects)

Width $=\Delta x_{k}$
$k^{\text {th }}$ V-Rect in $R_{2}: \frac{\text { Height }}{}=2 x_{k}^{*}-\left[4-2\left(x_{k}^{*}\right)^{2}\right]$.
Riemann Sum: $\operatorname{Area}\left(R_{2}\right) \approx A_{N}^{*}=\sum_{k=1}^{N}\left[2\left(x_{k}^{*}\right)^{2}+2 x_{k}^{*}-4\right] \Delta x_{k}$

Area Between Two Curves (Using V-Rects)

Riemann Sum: $\operatorname{Area}\left(R_{2}\right) \approx A_{N}^{*}=\sum_{k=1}^{N}\left[2\left(x_{k}^{*}\right)^{2}+2 x_{k}^{*}-4\right] \Delta x_{k}$ Integral: Area $\left(R_{2}\right)=\lim _{N \rightarrow \infty} A_{N}^{*}=\int_{\text {smallest } x \text {-coord. in } R_{2}}^{\text {largest } x \text {-coord. in } R_{2}}\left(2 x^{2}+2 x-4\right) d x$

Area Between Two Curves (Using V-Rects)

Riemann Sum: $\operatorname{Area}\left(R_{2}\right) \approx A_{N}^{*}=\sum_{k=1}^{N}\left[2\left(x_{k}^{*}\right)^{2}+2 x_{k}^{*}-4\right] \Delta x_{k}$
Integral: $\operatorname{Area}\left(R_{2}\right)=\lim _{N \rightarrow \infty} A_{N}^{*}=\int_{1}^{2}\left(2 x^{2}+2 x-4\right) d x$

Area Between Two Curves (Using V-Rects)

$\operatorname{Area}(R)=\operatorname{Area}\left(R_{1}\right)+\operatorname{Area}\left(R_{2}\right)$
$=\int_{-2}^{1}\left(4-2 x-2 x^{2}\right) d x+\int_{1}^{2}\left(2 x^{2}+2 x-4\right) d x=9+\frac{11}{3}=\frac{38}{3}$

Area Between Two Curves (Using H-Rects)

EXAMPLE: Let region R be bounded by curves $y=2 x, y=4-2 x^{2}, x=2$. Setup integral(s) to compute $\operatorname{Area}(R)$ using H-Rects.

Sketch \& characterize region R (label BP's \& BC's in terms of y) Subdivide region (via dashed line) into four H -simple subregions $R_{3}, R_{4}, R_{5}, R_{6}$.

Area Between Two Curves (Using H-Rects)

Key Element: H-Rectangle (H-Rect)

Area Between Two Curves (Using H-Rects)

$k^{\text {th }} \mathrm{H}$-Rect in $R_{3}:$| Width | $=\Delta y_{k}$ |
| ---: | :--- |
| Length | $=($ Right BC $)-($ Left BC $)$ |
| Area | $=($ Length $) \times($ Width $)$ |

Area Between Two Curves (Using H-Rects)

$k^{\text {th }} \mathrm{H}$-Rect in $R_{3}: \begin{aligned} \text { Width } & =\Delta y_{k} \\ \text { Length } & =\frac{1}{2} y_{k}^{*}-\left(-\sqrt{2-\frac{1}{2} y_{k}^{*}}\right) \\ \text { Area } & =\left(\frac{1}{2} y_{k}^{*}+\sqrt{2-\frac{1}{2} y_{k}^{*}}\right) \Delta y_{k}\end{aligned}$
Riemann Sum: $\operatorname{Area}\left(R_{3}\right) \approx A_{N}^{*}=\sum_{k=1}^{N}\left(\frac{1}{2} y_{k}^{*}+\sqrt{2-\frac{1}{2} y_{k}^{*}}\right) \Delta y_{k}$

Area Between Two Curves (Using H-Rects)

Riemann Sum: $\operatorname{Area}\left(R_{3}\right) \approx A_{N}^{*}=\sum_{k=1}^{N}\left(\frac{1}{2} y_{k}^{*}+\sqrt{2-\frac{1}{2} y_{k}^{*}}\right) \Delta y_{k}$ Integral: Area $\left(R_{3}\right)=\lim _{N \rightarrow \infty} A_{N}^{*}=\int_{\text {smallest } y \text {-coord. in } R_{3}}^{\text {largest } y \text {-coord. in } R_{3}}\left(\frac{1}{2} y+\sqrt{2-\frac{1}{2}} y\right) d y$

Area Between Two Curves (Using H-Rects)

Riemann Sum: $\operatorname{Area}\left(R_{3}\right) \approx A_{N}^{*}=\sum_{k=1}^{N}\left(\frac{1}{2} y_{k}^{*}+\sqrt{2-\frac{1}{2} y_{k}^{*}}\right) \Delta y_{k}$ Integral: $\operatorname{Area}\left(R_{3}\right)=\lim _{N \rightarrow \infty} A_{N}^{*}=\int_{-4}^{2}\left(\frac{1}{2} y+\sqrt{2-\frac{1}{2}} y\right) d y$

Area Between Two Curves (Using H-Rects)

$k^{\text {th }} \mathrm{H}$-Rect in $R_{4}: \begin{aligned} \text { Width } & =\Delta y_{k} \\ \text { Length } & =(\text { Right BC })-(\text { Left BC }) \\ \text { Area } & =(\text { Length }) \times(\text { Width })\end{aligned}$

Area Between Two Curves (Using H-Rects)

$k^{\text {th }}$ H-Rect in $R_{4}: \begin{aligned} & \text { Width }=\Delta y_{k} \\ & \begin{array}{l}\text { Length }\end{array}=\sqrt{2-\frac{1}{2} y_{k}^{*}}-\left(-\sqrt{2-\frac{1}{2} y_{k}^{*}}\right) \\ & \text { Area }=2 \sqrt{2-\frac{1}{2} y_{k}^{*} \Delta y_{k}}\end{aligned}$
Riemann Sum: $\operatorname{Area}\left(R_{4}\right) \approx A_{N}^{*}=\sum_{k=1}^{N} 2 \sqrt{2-\frac{1}{2} y_{k}^{*}} \Delta y_{k}$

Area Between Two Curves (Using H-Rects)

Riemann Sum: $\operatorname{Area}\left(R_{4}\right) \approx A_{N}^{*}=\sum_{k=1}^{N} 2 \sqrt{2-\frac{1}{2} y_{k}^{*}} \Delta y_{k}$
Integral: Area $\left(R_{4}\right)=\lim _{N \rightarrow \infty} A_{N}^{*}=\int_{\text {smallest } y \text {-coord. in } R_{4}}^{\text {largest } y \text {-coord. in } R_{4}} 2 \sqrt{2-\frac{1}{2}} y d y$

Area Between Two Curves (Using H-Rects)

Riemann Sum: $\operatorname{Area}\left(R_{4}\right) \approx A_{N}^{*}=\sum_{k=1}^{N} 2 \sqrt{2-\frac{1}{2} y_{k}^{*}} \Delta y_{k}$
Integral: $\operatorname{Area}\left(R_{4}\right)=\lim _{N \rightarrow \infty} A_{N}^{*}=\int_{2}^{4} 2 \sqrt{2-\frac{1}{2}} y d y$

Area Between Two Curves (Using H-Rects)

$k^{\text {th }} \mathrm{H}$-Rect in $R_{5}: \begin{aligned} \text { Width } & =\Delta y_{k} \\ \text { Length } & =(\text { Right BC })-(\text { Left BC }) \\ \text { Area } & =(\text { Length }) \times(\text { Width })\end{aligned}$

Area Between Two Curves (Using H-Rects)

Width $=\Delta y_{k}$
$k^{\text {th }} \mathrm{H}$-Rect in R_{5} : Length $=2-\sqrt{2-\frac{1}{2} y_{k}^{*}}$
Area $=\left(2-\sqrt{2-\frac{1}{2} y_{k}^{*}}\right) \Delta y_{k}$
Riemann Sum: $\operatorname{Area}\left(R_{5}\right) \approx A_{N}^{*}=\sum_{k=1}^{N}\left(2-\sqrt{2-\frac{1}{2} y_{k}^{*}}\right) \Delta y_{k}$

Area Between Two Curves (Using H-Rects)

Riemann Sum: $\operatorname{Area}\left(R_{5}\right) \approx A_{N}^{*}=\sum_{k=1}^{N}\left(2-\sqrt{2-\frac{1}{2} y_{k}^{*}}\right) \Delta y_{k}$ Integral: $\operatorname{Area}\left(R_{5}\right)=\lim _{N \rightarrow \infty} A_{N}^{*}=\int_{\text {smallest } y \text {-coord. in } R_{5}}^{\text {largest } y \text {-coord. in } R_{5}}\left(2-\sqrt{2-\frac{1}{2} y}\right) d y$

Area Between Two Curves (Using H-Rects)

Riemann Sum: $\operatorname{Area}\left(R_{5}\right) \approx A_{N}^{*}=\sum_{k=1}^{N}\left(2-\sqrt{2-\frac{1}{2} y_{k}^{*}}\right) \Delta y_{k}$ Integral: $\operatorname{Area}\left(R_{5}\right)=\lim _{N \rightarrow \infty} A_{N}^{*}=\int_{-4}^{2}\left(2-\sqrt{2-\frac{1}{2} y}\right) d y$

Area Between Two Curves (Using H-Rects)

$k^{\text {th }} \mathrm{H}$-Rect in $R_{6}:$| Width | $=\Delta y_{k}$ |
| ---: | :--- |
| Length | $=($ Right BC $)-($ Left BC $)$ |
| Area | $=($ Length $) \times($ Width $)$ |

Area Between Two Curves (Using H-Rects)

Area Between Two Curves (Using H-Rects)

Riemann Sum: $\operatorname{Area}\left(R_{6}\right) \approx A_{N}^{*}=\sum_{k=1}^{N}\left(2-\frac{1}{2} y_{k}^{*}\right) \Delta y_{k}$
Integral: Area $\left(R_{6}\right)=\lim _{N \rightarrow \infty} A_{N}^{*}=\int_{\text {smallest } y \text {-coord. in } R_{6}}^{\text {largest } y \text {-coord. in } R_{6}}\left(2-\frac{1}{2} y\right) d y$

Area Between Two Curves (Using H-Rects)

Riemann Sum: $\operatorname{Area}\left(R_{6}\right) \approx A_{N}^{*}=\sum_{k=1}^{N}\left(2-\sqrt{2-\frac{1}{2} y_{k}^{*}}\right) \Delta y_{k}$ Integral: $\operatorname{Area}\left(R_{6}\right)=\lim _{N \rightarrow \infty} A_{N}^{*}=\int_{2}^{4}\left(2-\frac{1}{2} y\right) d y$

Area Between Two Curves (Using H-Rects)

$\operatorname{Area}(R)=\operatorname{Area}\left(R_{3}\right)+\operatorname{Area}\left(R_{4}\right)+\operatorname{Area}\left(R_{5}\right)+\operatorname{Area}\left(R_{6}\right)$
$=\int_{-4}^{2}\left(\frac{1}{2} y+\sqrt{2-\frac{1}{2} y}\right) d y+\int_{2}^{4} 2 \sqrt{2-\frac{1}{2} y} d y+\int_{-4}^{2}\left(2-\sqrt{2-\frac{1}{2} y}\right) d y+$
$\int_{2}^{4}\left(2-\frac{1}{2} y\right) d y=\frac{19}{3}+\frac{8}{3}+\frac{8}{3}+1=\frac{38}{3}$

The Facts of Life (according to WeBWorK)

".....and then WeBWorK decreed:"

- The Good News: Many HW problems just want the integral(s) setup.
- The Bad News: Many HW problems want the integral(s) computed.

So let's briefly recap computation of basic integrals from Calculus I....

Indefinite Integral Rules (from Calculus I)

Here, $C \in \mathbb{R}$ is called the constant of integration. Also, $k \in \mathbb{R}$.
Zero Rule:

$$
\int_{C} 0 d x=C
$$

Constant Rule:

$$
\int_{C} k d x=k x+C
$$

Constant Multiple Rule:
Sum/Diff Rule:

$$
\int k f(x) d x=k \int f(x) d x
$$

$$
\int_{\text {f }}^{J}[f(x) \pm g(x)] d x=\int f(x) d x \pm \int g(x) d x
$$

Power Rule:

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}+C \quad(\text { provided } n \in \mathbb{R} \backslash\{-1\}) \\
& \int e^{x} d x=e^{x}+C \\
& \int a^{x} d x=\frac{a^{x}}{\ln a}+C \quad\left(\text { provided } a \in \mathbb{R}_{+} \backslash\{1\}\right) \\
& \int \frac{1}{x} d x=\ln |x|+C
\end{aligned}
$$

NOTATION: $\mathbb{R} \backslash\{-1\}$ means "All real numbers except -1 " NOTATION: $\mathbb{R}_{+} \backslash\{1\}$ means "All positive real numbers except 1 "

Indefinite Integral Rules (from Calculus I)

Here, $C \in \mathbb{R}$ is called the constant of integration.

- $\int \sin x d x=-\cos x+C$
- $\int \cos x d x=\sin x+C$
- $\int \sec ^{2} x d x=\tan x+C$
- $\int \sec x \tan x d x=\sec x+C$
- $\int \csc ^{2} x d x=-\cot x+C$
- $\int \csc x \cot x d x=-\csc x+C$
- $\int \frac{1}{\sqrt{1-x^{2}}} d x=\arcsin x+C$
- $\int \frac{1}{1+x^{2}} d x=\arctan x+C$
- $\int \frac{1}{|x| \sqrt{x^{2}-1}} d x=\operatorname{arcsec} x+C$

Fundamental Theorem of Calculus (FTC)

Theorem

Let function $f \in C^{1}[a, b]$. Then $\quad \int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$
WORKED EXAMPLE: Compute $I=\int_{1}^{2}\left(x^{4}-3\right) d x$.
$\int_{1}^{2}\left(x^{4}-3\right) d x=\left[\frac{1}{5} x^{5}-3 x\right]_{x=1}^{x=2} \stackrel{F T C}{=}\left[\frac{1}{5}(2)^{5}-3(2)\right]-\left[\frac{1}{5}(1)^{5}-3(1)\right]=\frac{16}{5}$
WORKED EXAMPLE: Compute $I=\int_{\pi / 6}^{3 \pi / 4} \sin \theta d \theta$.

$$
\begin{aligned}
\int_{\pi / 6}^{3 \pi / 4} \sin \theta d \theta & =[-\cos \theta]_{\theta=\pi / 6}^{\theta=3 \pi / 4} \stackrel{F T C}{=}[-\cos (3 \pi / 4)]-[-\cos (\pi / 6)] \\
& =-\left(-\frac{\sqrt{2}}{2}\right)+\left(\frac{\sqrt{3}}{2}\right)=\frac{\sqrt{2}+\sqrt{3}}{2}
\end{aligned}
$$

Change of Variables (u-Substitution)

WORKED EXAMPLE: Evaluate $I=\int x e^{x^{2}} d x$.
CV: Let $u=x^{2}$, then $d u=2 x d x \Longrightarrow x d x=\frac{1}{2} d u$
$\Longrightarrow \int x e^{x^{2}} d x \stackrel{C V}{=} \int e^{u}\left(\frac{1}{2} d u\right)=\frac{1}{2} e^{u}+C \stackrel{C V}{=} \frac{1}{2} e^{x^{2}}+C$
WORKED EXAMPLE: Evaluate $I=\int_{-2}^{3} x e^{x^{2}} d x$.
CV: Let $u=x^{2}$, then $d u=2 x d x \Longrightarrow x d x=\frac{1}{2} d u$ and $u(-2)=(-2)^{2}=4$ and $u(3)=(3)^{2}=9$
$\Longrightarrow \int_{-2}^{3} x e^{x^{2}} d x \stackrel{C V}{=} \int_{4}^{9} e^{u}\left(\frac{1}{2} d u\right)=\left[\frac{1}{2} e^{u}\right]_{u=4}^{u=9} \stackrel{F T C}{=} \frac{1}{2}\left(e^{9}-e^{4}\right)$

Nonelementary Integrals

Definition

A nonelementary integral is an integral whose antiderivative cannot be expressed in a finite closed form.

Here's a small list of nonelementary integrals (there are many, many more):

$$
\begin{array}{lll}
\int e^{x^{2}} d x & \int \frac{e^{x}}{x} d x & \int \sqrt{x} e^{-x} d x \\
\int \sin \left(x^{2}\right) d x & \int \cos \left(e^{x}\right) d x & \int e^{\cos x} d x \\
\int \sqrt{1+x^{4}} d x & \int \ln (\ln x) d x & \int \frac{x}{e^{x}-1} d x \\
\int \frac{1}{\ln x} d x & \int \frac{\sin x}{x} d x & \int \sin (\sin x) d x \\
\int x^{x} d x & \int \frac{1}{x^{x}} d x & \int \arctan (\ln x) d x
\end{array}
$$

- When computing integrals, avoid nonelementary integrals!
- If using V-Rects leads to a nonelementary integral, use H-Rects instead.
- If using H-Rects leads to a nonelementary integral, use V-Rects instead.

Fin.

