Volumes: Slabs, Washers, Shells

 Calculus IIJosh Engwer

TTU

27 January 2014

Volumes (PART I)

VOLUMES PART I: SOLIDS WITH KNOWN CROSS SECTIONS

Solids with Known Cross Sections (Slabs)

(Thickness of $k^{\text {th }} \mathrm{H}$-Slab) $)=\left(\right.$ Width of $k^{\text {th }}$ generating H-Rect) $)=\Delta y_{k}$
$\left(\right.$ Thickness of $k^{\text {th }}$ V-Slab $)=\left(\right.$ Width of $k^{\text {th }}$ generating V-Rect $)=\Delta x_{k}$

Solids with Known Cross Sections (Demo)

(DEMO) SOLIDS WITH KNOWN CROSS SECTION (Click below):

solios of kNown CRoss section by Abby Brown
base region circle square triangle mixed undulating
cross sections squares equilateraltriangles semicicrices rectangles
s.

Volumes of Slabs

Proposition

Volume of Slab $=($ Area of Cross Section $) \times($ Thickness $)$

Volume of Solid with Known Cross Section (CS)

EXAMPLE: Let region R be bounded by curves $y=2^{x}, y=4^{-x}, x=2$.
Let solid S have base R and equilateral triangular cross sections \perp to x-axis.
Setup integral(s) to compute Volume (S).
$\perp \equiv$ "perpendicular"

Volume of Solid with Known Cross Section (CS)

EXAMPLE: Let region R be bounded by curves $y=2^{x}, y=4^{-x}, x=2$.

Sketch \& characterize region R (label BP's \& BC's in terms of x) Notice region R is V -simple.

Volume of Solid with Known Cross Section (CS)

EXAMPLE: Let region R be bounded by curves $y=2^{x}, y=4^{-x}, x=2$.

Sketch \& characterize region R. (remove unnecessary clutter) Notice region R is V -simple.

Volume of Solid with Known Cross Section (CS)

Key Element: V-Slab (CS = Equilateral Triangle) generated by V-Rect

Volume of Solid with Known Cross Section (CS)

$k^{\text {th }}$ V-Slab on $R: \begin{aligned} & \text { Thickness } \\ & \text { Side Length }\end{aligned}=\left(\begin{array}{l}\text { Width of generating V-Rect })\end{array}\right.$

Volume of Solid with Known Cross Section (CS)

$k^{\text {th }}$ V-Slab on $R:$| Thickness $=\Delta x_{k}$ |
| :--- |
| Side Length |$=2^{x_{k}^{*}}-4^{-x_{k}^{*}}$.

Volume of Solid with Known Cross Section (CS)

$k^{\text {th }}$ V-Slab on $R: \begin{aligned} & \text { Thickness } \\ & \text { Side Length }\end{aligned}=\Delta x_{k}=2^{x_{k}^{*}}-4^{-x_{k}^{*}}$.
Riemann Sum: Volume $(S) \approx V_{N}^{*}=\sum_{k=1}^{N} \frac{\sqrt{3}}{4}\left[2^{x_{k}^{*}}-4^{-x_{k}^{*}}\right]^{2} \Delta x_{k}$

Volume of Solid with Known Cross Section (CS)

Riemann Sum: Volume $(S) \approx V_{N}^{*}=\sum_{k=1}^{N} \frac{\sqrt{3}}{4}\left[2^{x_{k}^{*}}-4^{-x_{k}^{*}}\right]^{2} \Delta x_{k}$
Integral: Volume $(S)=\lim _{N \rightarrow \infty} V_{N}^{*}=\int_{\text {smallest } x \text {-coord. in } R}^{\text {largest } x \text {-coord. in } R} \frac{\sqrt{3}}{4}\left(2^{x}-4^{-x}\right)^{2} d x$

Volume of Solid with Known Cross Section (CS)

Riemann Sum: Volume $(S) \approx V_{N}^{*}=\sum_{k=1}^{N} \frac{\sqrt{3}}{4}\left[2^{x_{k}^{*}}-4^{-x_{k}^{*}}\right]^{2} \Delta x_{k}$
Integral: Volume $(S)=\int_{0}^{2} \frac{\sqrt{3}}{4}\left(2^{x}-4^{-x}\right)^{2} d x \approx 1.7954$

Volume of Solid with Known Cross Section (CS)

EXAMPLE: Let region R be bounded by curves $y=2^{x}, y=4^{-x}, x=2$.
Let solid S have base R and equilateral triangular cross sections \perp to y-axis.
Setup integral(s) to compute Volume (S).
$\perp \equiv$ "perpendicular"

Volume of Solid with Known Cross Section (CS)

EXAMPLE: Let region R be bounded by curves $y=2^{x}, y=4^{-x}, x=2$.

Sketch \& characterize region R (label BP's \& BC's in terms of y) Notice region R is NOT H-simple, so subdivide into subregions R_{1}, R_{2}.

Volume of Solid with Known Cross Section (CS)

Key Element: H-Slab (CS = Equilateral Triangle) generated by H-Rect

Volume of Solid with Known Cross Section (CS)

	Thickness	=	(Width of generating H -Rect)
$k^{\text {th }} \mathrm{H}$-Slab on R_{1} :	Side Length	$=$	(Length of generating H-Rect)
	Volume		$\frac{\sqrt{3}}{4} \times(\text { Side Length })^{2} \times($ Thickness $)$

Volume of Solid with Known Cross Section (CS)

$k^{\text {th }} \mathrm{H}$-Slab on $R_{1}:$| Thickness |
| :--- |
| Side Length |$=\Delta y_{k}=2-\left(-\log _{4} y_{k}^{*}\right)$

Volume of Solid with Known Cross Section (CS)

$\begin{aligned} & \begin{array}{l}\text { Thickness }\end{array}=\Delta y_{k} \\ & k^{\text {th }} \text { H-Slab on } R_{1}: \begin{array}{l}\text { Side Length }\end{array}=2-\left(-\log _{4} y_{k}^{*}\right) \\ & \text { Volume }=\frac{\sqrt{3}}{4}\left(2+\log _{4} y_{k}^{*}\right)^{2} \Delta y_{k} \\ & \text { Riemann Sum: Volume }\left(S_{1}\right) \approx V_{N}^{*}=\sum_{k=1}^{N} \frac{\sqrt{3}}{4}\left(2+\log _{4} y_{k}^{*}\right)^{2} \Delta y_{k}\end{aligned}$

Volume of Solid with Known Cross Section (CS)

Riemann Sum: Volume $\left(S_{1}\right) \approx V_{N}^{*}=\sum_{k=1}^{N} \frac{\sqrt{3}}{4}\left(2+\log _{4} y_{k}^{*}\right)^{2} \Delta y_{k}$
Integral: $\operatorname{Volume}\left(S_{1}\right)=\lim _{N \rightarrow \infty} V_{N}^{*}=\int_{\text {smallest } y \text {-coord. in } R_{1}}^{\text {largest } y \text {-coord. in } R_{1}} \frac{\sqrt{3}}{4}\left(2+\log _{4} y\right)^{2} d y$

Volume of Solid with Known Cross Section (CS)

Riemann Sum: Volume $\left(S_{1}\right) \approx V_{N}^{*}=\sum_{k=1}^{N} \frac{\sqrt{3}}{4}\left(2+\log _{4} y_{k}^{*}\right)^{2} \Delta y_{k}$
Integral: Volume $\left(S_{1}\right)=\int_{1 / 16}^{1} \frac{\sqrt{3}}{4}\left(2+\log _{4} y\right)^{2} d y$

Volume of Solid with Known Cross Section (CS)

	Thickness	$=$	(Width of generating H-Rect)
$k^{\text {th }} \mathrm{H}$-Slab on R_{2} :	Side Length		(Length of generating H -Rect)
	Volume		$\frac{\sqrt{3}}{4} \times(\text { Side Length })^{2} \times($ Thickness $)$

Volume of Solid with Known Cross Section (CS)

$k^{\text {th }} \mathrm{H}$-Slab on $R_{2}:$| Thickness |
| :--- |
| Side Length |$=\Delta y_{k}=2-\log _{2} y_{k}^{*}$.

Volume of Solid with Known Cross Section (CS)

$\begin{aligned} & k^{\text {th }} \text { H-Slab on } R_{2}: \begin{array}{l}\text { Thickness } \\ \text { Side Length }\end{array}=\Delta y_{k} \\ & \text { Volume }=\frac{\sqrt{3}}{4}\left(2-\log _{2} y_{k}^{*}\right. \\ &\left.\text { Riemann Sum: } \operatorname{lol} y_{k}^{*}\right)^{2} \Delta y_{k} \\ & \text { Volume }\left(S_{2}\right) \approx V_{N}^{*}=\sum_{k=1}^{N} \frac{\sqrt{3}}{4}\left(2-\log _{2} y_{k}^{*}\right)^{2} \Delta y_{k}\end{aligned}$

Volume of Solid with Known Cross Section (CS)

Riemann Sum: Volume $\left(S_{2}\right) \approx V_{N}^{*}=\sum_{k=1}^{N} \frac{\sqrt{3}}{4}\left(2-\log _{2} y_{k}^{*}\right)^{2} \Delta y_{k}$
Integral: Volume $\left(S_{2}\right)=\lim _{N \rightarrow \infty} V_{N}^{*}=\int_{\text {smallest } y \text {-coord. in } R_{2}}^{\text {largest } y \text {-coord. in } R_{2}} \frac{\sqrt{3}}{4}\left(2-\log _{2} y\right)^{2} d y$

Volume of Solid with Known Cross Section (CS)

Riemann Sum: Volume $\left(S_{2}\right) \approx V_{N}^{*}=\sum_{k=1}^{N} \frac{\sqrt{3}}{4}\left(2-\log _{2} y_{k}^{*}\right)^{2} \Delta y_{k}$ Integral: Volume $\left(S_{2}\right)=\int_{1}^{4} \frac{\sqrt{3}}{4}\left(2-\log _{2} y\right)^{2} d y$

Volume of Solid with Known Cross Section (CS)

Region $R=R_{1} \cup R_{2} \Longrightarrow$ Solid $S=S_{1} \cup S_{2}$
\therefore Volume $(S)=\operatorname{Volume}\left(S_{1}\right)+\operatorname{Volume}\left(S_{2}\right)$
$=\int_{1 / 16}^{1} \frac{\sqrt{3}}{4}\left(2+\log _{4} y\right)^{2} d y+\int_{1}^{4} \frac{\sqrt{3}}{4}\left(2-\log _{2} y\right)^{2} d y \approx 2.0818$

Volumes (PART II)

VOLUMES PART II: SOLIDS OF REVOLUTION

Solids of Revolution

Axis of Revolution: x-axis

Solids of Revolution

Axis of Revolution: y-axis

Solids of Revolution (V-Washers)

Axis of Revolution: x-axis

Solids of Revolution (H-Shells)

Axis of Revolution: y-axis

Solids of Revolution (V-Shells)

Axis of Revolution: x-axis

Solids of Revolution (H-Washers)

Axis of Revolution: y-axis

Volume of Washers

Proposition

Volume of Washer $=\pi \times\left[(\text { Outer Radius })^{2}-(\text { Inner Radius })^{2}\right] \times($ Thickness $)$

Volume of V-Shells

Proposition

Volume of $k^{\text {th }}$ V-Shell $=2 \pi \times($ Radius $) \times($ Length $) \times($ Thickness $)$

Radius involves the $\boldsymbol{\operatorname { t a g }} y_{k}^{*}$
Thickness $=\Delta y_{k}$

Volume of H-Shells

Proposition

Volume of $k^{\text {th }} H$-Shell $=2 \pi \times($ Radius $) \times($ Height $) \times($ Thickness $)$

Radius involves the $\boldsymbol{\operatorname { t a g }} x_{k}^{*}$
Thickness $=\Delta x_{k}$

Volume of Solid of Revolution (using Washers)

EXAMPLE: Let region R be bounded by curves $y=2^{x}, y=4^{-x}, x=2$.
Let S be the solid formed by revolving region R about x-axis using washers.
Setup integral(s) to compute Volume (S).
$\perp \equiv$ "perpendicular"

Volume of Solid of Revolution (using Washers)

EXAMPLE: Let region R be bounded by curves $y=2^{x}, y=4^{-x}, x=2$.

Sketch \& characterize region R (label BP's \& BC's in terms of x) Notice region R is V -simple.

Volume of Solid of Revolution (using Washers)

EXAMPLE: Let region R be bounded by curves $y=2^{x}, y=4^{-x}, x=2$.

Sketch \& characterize region R. (remove unnecessary clutter) Sketch \& label the axis of revolution (dashed line).

Volume of Solid of Revolution (using Washers)

Key Element: V-Washer (generated by V-Rect)

Volume of Solid of Revolution (using Washers)

$k^{\text {th }}$ V-Washer on R :
Thickness $=$ (Width of generating V-Rect)
Outer Radius $=$ (Distance from farther BC to Axis of Revolution) Inner Radius $=$ (Distance from closer BC to Axis of Revolution)
Volume $\quad=\pi \times\left[\right.$ Outer Radius $\left.^{2}-(\text { Inner Radius })^{2}\right] \times($ Thickness $)$

Volume of Solid of Revolution (using Washers)

Thickness $=\Delta x_{k}$
Outer Radius $=2^{x_{k}^{*}}-0$
$k^{t h}$ V-Washer on R :

$$
\begin{array}{ll}
\text { Inner Radius } & =4^{-x_{k}^{*}}-0 \\
\hline \text { Volume } & =\pi\left[\left(2^{x_{k}^{*}}\right)^{2}-\left(4^{-x_{k}^{*}}\right)^{2}\right] \Delta x_{k}
\end{array}
$$

Volume of Solid of Revolution (using Washers)

$k^{\text {th }}$ V-Washer on $R:$| Thickness $=\Delta x_{k}$ |
| :--- |
| Outer Radius $=2^{x_{k}^{*}}-0$ |
| $\begin{array}{l}\text { Inner Radius }\end{array}=4^{-x_{k}^{*}}-0$ |
| Volume |
| V |

Volume of Solid of Revolution (using Washers)

Volume of Solid of Revolution (using Washers)

$k^{\text {th }}$ V-Washer on $R:$| Thickness | $=\Delta x_{k}$ |
| :--- | :--- |
| Outer Radius | $=2^{x_{k}^{*}}-0$ |
| Inner Radius | $=4^{-x_{k}^{*}}-0$ |
| | Volume |
| | $=\pi\left[4^{x_{k}^{*}}-16^{-x_{k}^{*}}\right] \Delta x_{k}$ |

Riemann Sum: Volume $(S) \approx V_{N}^{*}=\sum_{k=1}^{N} \pi\left[4^{x_{k}^{*}}-16^{-x_{k}^{*}}\right] \Delta x_{k}$

Volume of Solid of Revolution (using Washers)

Riemann Sum: Volume $(S) \approx V_{N}^{*}=\sum_{k=1}^{N} \pi\left[4^{x_{k}^{*}}-16^{-x_{k}^{*}}\right] \Delta x_{k}$
Integral: Volume $(S)=\lim _{N \rightarrow \infty} V_{N}^{*}=\int_{\text {smallest } x \text {-coord. in } R}^{\text {largest } x \text {-coord. in } R} \pi\left(4^{x}-16^{-x}\right) d x$

Volume of Solid of Revolution (using Washers)

Riemann Sum: $\operatorname{Volume}(S) \approx V_{N}^{*}=\sum_{k=1}^{N} \pi\left[4^{x_{k}^{*}}-16^{-x_{k}^{*}}\right] \Delta x_{k}$
Integral: $\operatorname{Volume}(S)=\int_{0}^{2} \pi\left(4^{x}-16^{-x}\right) d x \approx 32.864$

Volume of Solid of Revolution (using Shells)

EXAMPLE: Let region R be bounded by curves $y=2^{x}, y=4^{-x}, x=2$.
Let S be the solid formed by revolving region R about line $y=5$ using shells.
Setup integral(s) to compute Volume (S).
$\perp \equiv$ "perpendicular"

Volume of Solid of Revolution (using Shells)

EXAMPLE: Let region R be bounded by curves $y=2^{x}, y=4^{-x}, x=2$.

Sketch \& characterize region R (label BP's \& BC's in terms of y) Notice region R is NOT H-simple, so subdivide into subregions R_{1}, R_{2}.

Volume of Solid of Revolution (using Shells)

EXAMPLE: Let region R be bounded by curves $y=2^{x}, y=4^{-x}, x=2$.

Key Element: V-Shell (generated by H-Rect) Sketch \& label the axis of revolution $y=5$.

Volume of Solid of Revolution (using Shells)

$k^{\text {th }}$ V-Shell on R_{1} :
Thickness $=$ (Width of generating H-Rect)
Radius $=$ (Positive Distance from H-Rect to Axis of Revolution)
Length $=$ (Length of generating H-Rect)
Volume $=2 \pi \times($ Radius $) \times($ Length $) \times($ Thickness $)$

Volume of Solid of Revolution (using Shells)

$k^{t h}$ V-Shell on $R_{1}:$| Thickness $=\Delta y_{k}$ |
| :--- |
| Radius $=5-y_{k}^{*}$ |
| Length |
| |
| Volume |$=2-\left(-\log _{4} y_{k}^{*}\right)$.

Volume of Solid of Revolution (using Shells)

$k^{\text {th }}$ V-Shell on $R_{1}: \begin{aligned} & \text { Thickness }=\Delta y_{k} \\ & \text { Radius } \\ & \text { Rength }\end{aligned}=5-y_{k}^{*}=2-\left(-\log _{4} y_{k}^{*}\right)$.
Riemann Sum: Volume $\left(S_{1}\right) \approx V_{N}^{*}=\sum_{k=1}^{N} 2 \pi\left(5-y_{k}^{*}\right)\left(2+\log _{4} y_{k}^{*}\right) \Delta y_{k}$

Volume of Solid of Revolution (using Shells)

$$
\begin{array}{ll}
\text { Thickness } & =\Delta y_{k} \\
\text { Radius } & =5-y_{k}^{*} \\
\text { Length } & =2-\left(-\log _{4} y_{k}^{*}\right) \\
\hline \text { Volume } & =2 \pi\left(5-y_{k}^{*}\right)\left(2+\log _{4} y_{k}^{*}\right) \Delta y_{k}
\end{array}
$$

Riemann Sum: Volume $\left(S_{1}\right) \approx V_{N}^{*}=\sum_{k=1}^{N} 2 \pi\left(5-y_{k}^{*}\right)\left(2+\log _{4} y_{k}^{*}\right) \Delta y_{k}$
Integral: Volume $\left(S_{1}\right)=\lim _{N \rightarrow \infty} V_{N}^{*}=\int_{\text {smallest } y \text {-coord. in } R_{1}}^{\text {largest } y \text {-coord. in } R_{1}} 2 \pi(5-y)\left(2+\log _{4} y\right) d y$

Volume of Solid of Revolution (using Shells)

Riemann Sum: Volume $\left(S_{1}\right) \approx V_{N}^{*}=\sum_{k=1}^{N} 2 \pi\left(5-y_{k}^{*}\right)\left(2+\log _{4} y_{k}^{*}\right) \Delta y_{k}$
Integral: Volume $\left(S_{1}\right)=\int_{1 / 16}^{1} 2 \pi(5-y)\left(2+\log _{4} y\right) d y$

Volume of Solid of Revolution (using Shells)

$k^{\text {th }}$ V-Shell on R_{2} :
Thickness $=$ (Width of generating H-Rect)
Radius $=$ (Positive Distance from H-Rect to Axis of Revolution)
Length $=$ (Length of generating H-Rect)
Volume $=2 \pi \times($ Radius $) \times($ Length $) \times($ Thickness $)$

Volume of Solid of Revolution (using Shells)

$k^{\text {th }}$ V-Shell on $R_{2}: \begin{aligned} & \text { Thickness }=\Delta y_{k} \\ & \text { Radius }=5-y_{k}^{*} \\ & \text { Length }\end{aligned}=2-\log _{2} y_{k}^{*}$.

Volume of Solid of Revolution (using Shells)

$k^{\text {th }}$ V-Shell on $R_{2}: \begin{aligned} & \text { Thickness }=\Delta y_{k} \\ & \text { Radius } \\ & \text { Rength }\end{aligned}=5-y_{k}^{*}=2-\log _{2} y_{k}^{*}$.
Riemann Sum: Volume $\left(S_{2}\right) \approx V_{N}^{*}=\sum_{k=1}^{N} 2 \pi\left(5-y_{k}^{*}\right)\left(2-\log _{2} y_{k}^{*}\right) \Delta y_{k}$

Volume of Solid of Revolution (using Shells)

$$
\begin{aligned}
\text { Thickness } & =\Delta y_{k} \\
\text { Radius } & =5-y_{k}^{*} \\
\text { Length } & =2-\log _{2} y_{k}^{*} \\
\hline \text { Volume } & =2 \pi\left(5-y_{k}^{*}\right)\left(2-\log _{2} y_{k}^{*}\right) \Delta y_{k}
\end{aligned}
$$

Riemann Sum: Volume $\left(S_{2}\right) \approx V_{N}^{*}=\sum_{k=1}^{N} 2 \pi\left(5-y_{k}^{*}\right)\left(2-\log _{2} y_{k}^{*}\right) \Delta y_{k}$
Integral: Volume $\left(S_{2}\right)=\lim _{N \rightarrow \infty} V_{N}^{*}=\int_{\text {smallest } y \text {-coord. in } R_{2}}^{\text {largest } y \text {-coord. in } R_{2}} 2 \pi(5-y)\left(2-\log _{2} y\right) d y$

Volume of Solid of Revolution (using Shells)

Riemann Sum: Volume $\left(S_{2}\right) \approx V_{N}^{*}=\sum_{k=1}^{N} 2 \pi\left(5-y_{k}^{*}\right)\left(2-\log _{2} y_{k}^{*}\right) \Delta y_{k}$
Integral: $\operatorname{Volume}\left(S_{2}\right)=\int_{1}^{4} 2 \pi(5-y)\left(2-\log _{2} y\right) d y$

Volume of Solid of Revolution (using Shells)

Region $R=R_{1} \cup R_{2} \Longrightarrow$ Solid $S=S_{1} \cup S_{2}$
\therefore Volume $(S)=\operatorname{Volume}\left(S_{1}\right)+\operatorname{Volume}\left(S_{2}\right)$
$=\int_{1 / 16}^{1} 2 \pi(5-y)\left(2+\log _{4} y\right) d y+\int_{1}^{4} 2 \pi(5-y)\left(2-\log _{2} y\right) d y \approx 81.8613$

Fin.

