Volumes: Slabs, Washers, Shells Calculus II

Josh Engwer

TTU

27 January 2014

VOLUMES PART I: SOLIDS WITH KNOWN CROSS SECTIONS

Solids with Known Cross Sections (Slabs)

27 January 2014 3 / 64

Solids with Known Cross Sections (Demo)

(DEMO) SOLIDS WITH KNOWN CROSS SECTION (Click below):

Volumes of Slabs

Proposition $\textit{Volume of Slab} = \left(\textit{Area of Cross Section}\right) \times \left(\textit{Thickness}\right)$

EXAMPLE: Let region *R* be bounded by curves $y = 2^x$, $y = 4^{-x}$, x = 2.

Let solid *S* have base *R* and equilateral triangular cross sections \perp to *x*-axis.

Setup integral(s) to compute Volume(*S*).

 $\perp \equiv$ "perpendicular"

EXAMPLE: Let region *R* be bounded by curves $y = 2^x$, $y = 4^{-x}$, x = 2.

Sketch & characterize region R (label BP's & BC's in terms of x) Notice region R is V-simple.

EXAMPLE: Let region *R* be bounded by curves $y = 2^x$, $y = 4^{-x}$, x = 2.

Sketch & characterize region *R*. (remove unnecessary clutter) Notice region *R* is V-simple.

Key Element: V-Slab (CS = Equilateral Triangle) generated by V-Rect

Riemann Sum: Volume(S)
$$\approx V_N^* = \sum_{k=1}^N \frac{\sqrt{3}}{4} \left[2^{x_k^*} - 4^{-x_k^*} \right]^2 \Delta x_k$$

Integral: Volume(S) $= \lim_{N \to \infty} V_N^* = \int_{\text{smallest x-coord. in } R}^{\text{largest x-coord. in } R} \frac{\sqrt{3}}{4} \left(2^x - 4^{-x} \right)^2 dx$

Riemann Sum: Volume(S)
$$\approx V_N^* = \sum_{k=1}^N \frac{\sqrt{3}}{4} \left[2^{x_k^*} - 4^{-x_k^*} \right]^2 \Delta x_k$$

Integral: Volume(S) $= \left[\int_0^2 \frac{\sqrt{3}}{4} \left(2^x - 4^{-x} \right)^2 dx \right] \approx 1.7954$

EXAMPLE: Let region *R* be bounded by curves $y = 2^x$, $y = 4^{-x}$, x = 2.

Let solid *S* have base *R* and equilateral triangular cross sections \perp to *y*-axis.

Setup integral(s) to compute Volume(*S*).

 $\perp \equiv$ "perpendicular"

EXAMPLE: Let region *R* be bounded by curves $y = 2^x$, $y = 4^{-x}$, x = 2.

Sketch & characterize region *R* (label BP's & BC's in terms of *y*) Notice region *R* is NOT H-simple, so subdivide into subregions R_1 , R_2 .

Key Element: H-Slab (CS = Equilateral Triangle) generated by H-Rect

 $k^{th} \text{ H-Slab on } R_1: \begin{array}{rcl} \text{Thickness} &=& \Delta y_k \\ \text{Side Length} &=& 2 - (-\log_4 y_k^*) \\ \hline \text{Volume} &=& \frac{\sqrt{3}}{4} \left(2 + \log_4 y_k^*\right)^2 \Delta y_k \end{array}$

Riemann Sum: Volume(S_1) $\approx V_N^* = \sum_{k=1}^N \frac{\sqrt{3}}{4} \left(2 + \log_4 y_k^*\right)^2 \Delta y_k$

Riemann Sum: Volume(
$$S_1$$
) $\approx V_N^* = \sum_{k=1}^N \frac{\sqrt{3}}{4} \left(2 + \log_4 y_k^*\right)^2 \Delta y_k$
Integral: Volume(S_1) $= \lim_{N \to \infty} V_N^* = \int_{\text{smallest y-coord. in } R_1}^{\text{largest y-coord. in } R_1} \frac{\sqrt{3}}{4} \left(2 + \log_4 y\right)^2 dy$

Riemann Sum: Volume(
$$S_1$$
) $\approx V_N^* = \sum_{k=1}^N \frac{\sqrt{3}}{4} (2 + \log_4 y_k^*)^2 \Delta y_k$
Integral: Volume(S_1) $= \int_{1/16}^1 \frac{\sqrt{3}}{4} (2 + \log_4 y)^2 dy$

 k^{th} H-Slab on R_2 : Thickness = Δy_k Side Length = $2 - \log_2 y_k^*$ Volume = $\frac{\sqrt{3}}{4} (2 - \log_2 y_k^*)^2 \Delta y_k$

Riemann Sum: Volume(S_2) $\approx V_N^* = \sum_{k=1}^N \frac{\sqrt{3}}{4} \left(2 - \log_2 y_k^*\right)^2 \Delta y_k$

Riemann Sum: Volume(
$$S_2$$
) $\approx V_N^* = \sum_{k=1}^N \frac{\sqrt{3}}{4} \left(2 - \log_2 y_k^*\right)^2 \Delta y_k$
Integral: Volume(S_2) $= \lim_{N \to \infty} V_N^* = \int_{\text{smallest y-coord. in } R_2}^{\text{largest y-coord. in } R_2} \frac{\sqrt{3}}{4} \left(2 - \log_2 y\right)^2 dy$

Riemann Sum: Volume(
$$S_2$$
) $\approx V_N^* = \sum_{k=1}^N \frac{\sqrt{3}}{4} (2 - \log_2 y_k^*)^2 \Delta y_k$
Integral: Volume(S_2) $= \int_1^4 \frac{\sqrt{3}}{4} (2 - \log_2 y)^2 dy$

Region $R = R_1 \cup R_2 \implies$ Solid $S = S_1 \cup S_2$

 \therefore Volume(S) = Volume(S₁) + Volume(S₂)

$$= \left| \int_{1/16}^{1} \frac{\sqrt{3}}{4} \left(2 + \log_4 y \right)^2 \, dy + \int_{1}^{4} \frac{\sqrt{3}}{4} \left(2 - \log_2 y \right)^2 \, dy \right| \approx 2.0818$$

VOLUMES PART II: SOLIDS OF REVOLUTION

Solids of Revolution

Axis of Revolution: x-axis

Solids of Revolution

Axis of Revolution: y-axis

Solids of Revolution (V-Washers)

Axis of Revolution: x-axis

Solids of Revolution (H-Shells)

Axis of Revolution: y-axis

Solids of Revolution (V-Shells)

Axis of Revolution: x-axis

Solids of Revolution (H-Washers)

Axis of Revolution: y-axis

Volume of Washers

Proposition
Volume of Washer =
$$\pi \times \left[\left(\text{Outer Radius} \right)^2 - \left(\text{Inner Radius} \right)^2 \right] \times \left(\text{Thickness} \right)$$

Proposition

Volume of
$$k^{th}$$
 V-Shell = $2\pi \times (Radius) \times (Length) \times (Thickness)$

Radius involves the **tag** y_k^*

Thickness $= \Delta y_k$

Josh Engwer (TTU)

Volumes: Slabs, Washers, Shells

Volume of H-Shells

Proposition

Volume of
$$k^{th}$$
 H-Shell = $2\pi \times (Radius) \times (Height) \times (Thickness)$

Radius involves the **tag** x_k^*

Thickness $= \Delta x_k$

Josh Engwer (TTU)

Volumes: Slabs, Washers, Shells

EXAMPLE: Let region *R* be bounded by curves $y = 2^x$, $y = 4^{-x}$, x = 2.

Let *S* be the solid formed by revolving region *R* about *x*-axis using washers.

Setup integral(s) to compute Volume(*S*).

 $\perp \equiv$ "perpendicular"

EXAMPLE: Let region *R* be bounded by curves $y = 2^x$, $y = 4^{-x}$, x = 2.

Sketch & characterize region R (label BP's & BC's in terms of x) Notice region R is V-simple.

EXAMPLE: Let region *R* be bounded by curves $y = 2^x$, $y = 4^{-x}$, x = 2.

Sketch & characterize region *R*. (remove unnecessary clutter) Sketch & label the **axis of revolution** (dashed line).

Josh Engwer (TTU)

Volumes: Slabs, Washers, Shells

Key Element: V-Washer (generated by V-Rect)

Riemann Sum: Volume(S)
$$\approx V_N^* = \sum_{k=1}^N \pi \left[4^{x_k^*} - 16^{-x_k^*} \right] \Delta x_k$$

Integral: Volume(S) $= \left[\int_0^2 \pi \left(4^x - 16^{-x} \right) dx \right] \approx 32.864$

EXAMPLE: Let region *R* be bounded by curves $y = 2^x$, $y = 4^{-x}$, x = 2.

Let *S* be the solid formed by revolving region *R* about line y = 5 using shells.

Setup integral(s) to compute Volume(*S*).

 $\perp \equiv$ "perpendicular"

EXAMPLE: Let region *R* be bounded by curves $y = 2^x$, $y = 4^{-x}$, x = 2.

Sketch & characterize region *R* (label BP's & BC's in terms of *y*) Notice region *R* is NOT H-simple, so subdivide into subregions R_1 , R_2 .

EXAMPLE: Let region *R* be bounded by curves $y = 2^x$, $y = 4^{-x}$, x = 2.

Key Element: V-Shell (generated by H-Rect) Sketch & label the **axis of revolution** y = 5.

 k^{th} V-Shell on R_1 :

Thickness	=	(Width	of gener	ating H	-Rect)

- Radius = (Positive Distance from H-Rect to Axis of Revolution)
- Length = (Length of generating H-Rect)

Volume = $2\pi \times (\text{Radius}) \times (\text{Length}) \times (\text{Thickness})$

 $k^{th} \text{ V-Shell on } R_1: \begin{array}{rcl} \text{Finickness} &=& \Delta y_k \\ \text{Radius} &=& 5 - y_k^* \\ \text{Length} &=& 2 - (-\log_4 y_k^*) \\ \hline \text{Volume} &=& 2\pi \left(5 - y_k^*\right) \left(2 + \log_4 y_k^*\right) \Delta y_k \end{array}$

Riemann Sum: Volume(
$$S_1$$
) $\approx V_N^* = \sum_{k=1}^N 2\pi (5 - y_k^*) (2 + \log_4 y_k^*) \Delta y_k$

Integral: Volume(
$$S_1$$
) = $\int_{1/16}^{1} 2\pi (5 - y) (2 + \log_4 y) dy$

 k^{th} V-Shell on R_2 :

Thickness	=	(Width of generating H-Rect)
Radius	=	(Positive Distance from H-Rect to Axis of Revolution)
Length	=	(Length of generating H-Rect)
Volume	=	$2\pi \times (\text{Radius}) \times (\text{Length}) \times (\text{Thickness})$

 k^{th} V-Shell on R_2 : $\begin{array}{rcl}
\text{Radius} &=& 5 - y_k^* \\
\text{Length} &=& 2 - \log_2 y_k^* \\
\hline
\text{Volume} &=& 2\pi \left(5 - y_k^*\right) \left(2 - \log_2 y_k^*\right) \Delta y_k
\end{array}$

Riemann Sum: Volume(
$$S_2$$
) $\approx V_N^* = \sum_{k=1}^N 2\pi (5 - y_k^*) (2 - \log_2 y_k^*) \Delta y_k$

Integral: Volume(
$$S_2$$
) = $\int_{1}^{4} 2\pi (5 - y) (2 - \log_2 y) dy$

Region $R = R_1 \cup R_2 \implies$ Solid $S = S_1 \cup S_2$

 \therefore Volume(S) = Volume(S₁) + Volume(S₂)

$$= \int_{1/16}^{1} 2\pi (5-y) (2 + \log_4 y) \, dy + \int_{1}^{4} 2\pi (5-y) (2 - \log_2 y) \, dy \approx 81.8613$$

Fin.