# Polar Curves: Graphs \& Areas 

## Calculus II

Josh Engwer

TTU

3 February 2014

## Polar Curves (PART I)

## POLAR CURVES PART I: GRAPHS OF POLAR CURVES

## Convert: Rectangular Coord's $\leftrightarrow$ Polar Coord's



REMARK: $r$ can be negative.

## Converting Polar Coord. $\rightarrow$ Rectangular Coord.

WORKED EXAMPLE: Convert polar coordinate $(3, \pi / 4)$ to rectangular form.
$\left\{\begin{array}{l}x=r \cos \theta \\ y=r \sin \theta\end{array} \Longrightarrow\left\{\begin{array}{l}x=3 \cos (\pi / 4)=(3)(1 / \sqrt{2}) \\ y=3 \sin (\pi / 4)=(3)(1 / \sqrt{2})\end{array} \Longrightarrow\left(\frac{3}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right)\right.\right.$
WORKED EXAMPLE: Convert polar coord. $(-3, \pi / 4)$ to rectangular form.
$\left\{\begin{array}{l}x=r \cos \theta \\ y=r \sin \theta\end{array} \Longrightarrow\left\{\begin{array}{l}x=-3 \cos (\pi / 4)=(-3)(1 / \sqrt{2}) \\ y=-3 \sin (\pi / 4)=(-3)(1 / \sqrt{2})\end{array} \Longrightarrow\left(-\frac{3}{\sqrt{2}},-\frac{3}{\sqrt{2}}\right)\right.\right.$
WORKED EXAMPLE: Convert polar coord. $(3,-\pi / 4)$ to rectangular form.
$\left\{\begin{array}{l}x=r \cos \theta \\ y=r \sin \theta\end{array} \Longrightarrow\left\{\begin{array}{l}x=3 \cos (-\pi / 4)=(3)(1 / \sqrt{2}) \\ y=3 \sin (-\pi / 4)=(3)(-1 / \sqrt{2})\end{array} \Longrightarrow\left(\frac{3}{\sqrt{2}},-\frac{3}{\sqrt{2}}\right)\right.\right.$
WORKED EXAMPLE: Convert polar coord. $(3,5 \pi / 4)$ to rectangular form.
$\left\{\begin{array}{l}x=r \cos \theta \\ y=r \sin \theta\end{array} \Longrightarrow\left\{\begin{array}{l}x=3 \cos (5 \pi / 4)=(3)(-1 / \sqrt{2}) \\ y=3 \sin (5 \pi / 4)=(3)(-1 / \sqrt{2})\end{array} \Longrightarrow\left(-\frac{3}{\sqrt{2}},-\frac{3}{\sqrt{2}}\right)\right.\right.$

## Special Polar Curves

$\left(a \neq 0, b \neq 0, k \neq 0, n \in \mathbb{Z}_{+}\right)$

| POLAR CURVE | PROTOTYPE | REMARK(S) |
| :---: | :---: | :---: |
| Rays thru Pole | $\theta=k$ | Always Graph! |
| Horizontal Lines (Off-Pole) | $r=a \csc \theta$ | Always convert! |
| Vertical Lines (Off-Pole) | $r=a \sec \theta$ | Always convert! |
| Circles Centered at Pole | $r=k$ | Always Graph! |
| Circles Containing Pole | $r=a \cos \theta, r=a \sin \theta$ | Always Graph! |
| Cardioids | $r=a \pm a \cos \theta, r=a \pm a \sin \theta$ | Always Graph! |
| Limaçons | $r=b \pm a \cos \theta, r=b \pm a \sin \theta$ | Always Graph! |
| Roses | $r=a \cos (n \theta), r=a \sin (n \theta)$ | Always Graph! |
| Lemniscates | $r^{2}=a^{2} \cos (2 \theta), r^{2}=a^{2} \sin (2 \theta)$ | Always Graph! |
| Arithmetic Spirals | $r=k \theta$ | Always Graph! |

The pole is the origin.

$$
\begin{aligned}
& r=a \csc \theta \Longleftrightarrow r=\frac{a}{\sin \theta} \Longleftrightarrow r \sin \theta=a \Longleftrightarrow y=a \\
& r=a \sec \theta \Longleftrightarrow r=\frac{a}{\cos \theta} \Longleftrightarrow r \cos \theta=a \Longleftrightarrow x=a
\end{aligned}
$$

## Special Polar Curves NOT to be Considered

The following special polar curves are too subtle or complicated to graph and use with double integrals, and so will not be considered here:
$(a \neq 0, b \neq 0, k \neq 0)$

- Logarithmic Spiral: $r=a e^{b \theta}, r=a^{k \theta}$
- Strophoid: $r=a \cos (2 \theta) \sec \theta$
- Bifolium: $r=a \sin \theta \cos ^{2} \theta$
- Folium of Descartes: $r=\frac{3 a \sin \theta \cos \theta}{\sin ^{3} \theta+\cos ^{3} \theta}$
- Ovals of Cassini: $r^{4}+b^{4}-2 b^{2} r^{2} \cos (2 \theta)=k^{4}$


## Graphing Polar Curves (Procedure)

(1) Graph $r=f(\theta)$ on the usual $x y$-plane where $x=\theta \& y=r$ (Rectangular Plot)

Use special angles for $\theta:\left\{0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}, \pi, \frac{5 \pi}{4}, \frac{3 \pi}{2}, \frac{7 \pi}{4}, 2 \pi\right\}$
If $f(\theta)$ has a trig fcn, set its argument to these angles \& solve for $\theta$ :

$$
\begin{aligned}
& \text { e.g. } f(\theta)=7 \sin (2 \theta) \\
& \Longrightarrow 2 \theta \in\left\{0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}, \pi, \frac{5 \pi}{4}, \frac{3 \pi}{2}, \frac{7 \pi}{4}, 2 \pi\right\} \\
& \Longrightarrow \theta \in\left\{0, \frac{\pi}{8}, \frac{\pi}{4}, \frac{3 \pi}{8}, \frac{\pi}{2}, \frac{5 \pi}{8}, \frac{3 \pi}{4}, \frac{7 \pi}{8}, \pi\right\}
\end{aligned}
$$

(2) Use the rectangular plot of $r=f(\theta)$ to trace the polar graph of $r=f(\theta)$ (Polar Plot)

Stop when it's clear that continuing would re-trace the polar plot.

IMPORTANT: Except for equations of lines, "connect the dots" using smooth curves, not line segments!

## Polar Plots



## REMARKS:

Even though $r$ can be negative, only label key positive $r$-values on each ray. The pole is the origin, but it has no unique polar representation: $(0, \theta)$ Polar coordinates are NOT unique: $\left(2, \frac{7 \pi}{4}\right)=\left(2,-\frac{\pi}{4}\right)=\left(-2, \frac{3 \pi}{4}\right)=\left(-2,-\frac{5 \pi}{4}\right)$

## Polar Plots

If necessary, include more rays in the polar plot.

## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.

## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.
STEP 1: Identify the key $\theta$-values.
The argument of the trig fcn should use "easy angles":

$$
\Longrightarrow \theta \in\left\{0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}, 2 \pi\right\}
$$

These are key values to label on the horizontal axis of rectangular plot.

## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.
STEP 1: Identify the key $\theta$-values.
The argument of the trig fcn should use "easy angles":

$$
\Longrightarrow \theta \in\left\{0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}, 2 \pi\right\}
$$

These are key values to label on the horizontal axis of rectangular plot.
STEP 2: Identify the key $r$-values.
Find the range of the curve: $\operatorname{Rng}[-2 \sin \theta]=[-2,2]$

The key values are the curve's max value, min value, \& mid value:

$$
\begin{aligned}
& \text { Rng }[-2 \sin \theta]=[-2,2] \Longrightarrow\left\{\begin{array}{c}
\text { Max Value }=2 \\
\text { Min Value }=-2
\end{array}\right. \\
& \Longrightarrow \text { Mid Value }:=\frac{(\text { Max Value })+(\text { Min Value })}{2}=\frac{2+(-2)}{2}=0
\end{aligned}
$$

These are key values to label on the vertical axis of rectangular plot.

## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.


STEP 3: Trace the rectangular plot of $r=-2 \sin \theta$

## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.


STEP 4: Trace the polar plot.

## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.


Setup the axes for the polar plot.

## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.


Consider the red portion of the rectangular plot (i.e. $\theta \in[0, \pi / 2]$ ).

## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.


Starting Point: $\theta=0 \Longrightarrow r=0$.

## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.


## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.


Ending Point: $\theta=\pi / 2 \Longrightarrow r=-2$.

## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.

$\theta=\pi / 2, r=-2 \Longrightarrow$ March 2 units in opposite direction from $\theta=\pi / 2$.

## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.


In Between: For $\theta \in(0, \pi / 2) \subseteq \mathrm{Ql}, r<0$ and $r$ departs from zero.

## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.


In Between: Trace a smooth curve in QIII that departs from pole.

## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.


Consider the green portion of the rectangular plot (i.e. $\theta \in[\pi / 2, \pi]$ ).

## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.


Starting Point: $\theta=\pi / 2 \Longrightarrow r=-2$.

## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.

$\theta=\pi / 2, r=-2 \Longrightarrow$ March 2 units in opposite direction from $\theta=\pi / 2$.

## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.


Ending Point: $\theta=\pi \Longrightarrow r=0$.

## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.


## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.


In Between: For $\theta \in(\pi / 2, \pi)=$ QII, $r<0$ and $r$ approaches zero.

## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.


In Between: Trace a smooth curve in QIV that approaches pole.

## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.


AND WE'RE DONE!

## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.


Done? Already? But why?? What about $\theta \in[\pi, 2 \pi]$ ??

## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.


Because continuing further would re-trace the same curve!

## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.


But let's continue anyway to see why the same curve is re-traced.....

## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.


Consider the blue portion of the rectangular plot (i.e. $\theta \in[\pi, 3 \pi / 2]$ ).

## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.


Starting Point: $\theta=\pi \Longrightarrow r=0$.

## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.


## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.


Ending Point: $\theta=3 \pi / 2 \Longrightarrow r=2$.

## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.

$\theta=3 \pi / 2, r=2 \Longrightarrow$ March 2 units in same direction as $\theta=3 \pi / 2$.

## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.


In Between: For $\theta \in(\pi, 3 \pi / 2) \subseteq$ QIII, $r>0$ and $r$ departs from zero.

## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.


In Between: Trace a smooth curve in QIII that departs from pole.

## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.


Consider the black portion of the rectangular plot (i.e. $\theta \in[3 \pi / 2,2 \pi]$ ).

## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.


Starting Point: $\theta=3 \pi / 2 \Longrightarrow r=2$.

## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.

$\theta=3 \pi / 2, r=2 \Longrightarrow$ March 2 units in same direction as $\theta=3 \pi / 2$.

## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.


Ending Point: $\theta=2 \pi \Longrightarrow r=0$.

## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.


## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.


In Between: For $\theta \in(3 \pi / 2,2 \pi) \subseteq$ QIV, $r>0$ and $r$ approaches zero.

## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.


In Between: Trace a smooth curve in QIV that approaches pole.

## Polar Plots (Example)

WORKED EXAMPLE: Plot the polar curve $r=-2 \sin \theta$.


Moral: NEVER RE-TRACE THE SAME POLAR CURVE!

## Polar Plots (Demo)

(DEMO) POLAR PLOTS (Click below):


## Intersection of Two Polar Curves

TASK: Find all intersection points of the polar curves $r=f(\theta) \& r=g(\theta)$.

- Solving $f(\theta)=g(\theta)$ finds some, but not necessarily all, intersection points.
- In particular, intersections at the pole are nearly impossible to find algebraically because the pole has no single representation in polar coordinates that satisfies both $r=f(\theta) \& r=g(\theta)$.
- Therefore, to find all intersection points, graph both curves!


## Intersection of Two Polar Curves (Example)


$2 \sin \theta=2 \cos \theta \Longrightarrow \cos \theta(\tan \theta-1)=0 \Longrightarrow \cos \theta=0$ or $\tan \theta=1$ $\Longrightarrow \theta \in\{\pi / 2,3 \pi / 2\}$ or $\theta \in\{\pi / 4,5 \pi / 4\}$
Discard $\theta=\pi / 2 \& \theta=3 \pi / 2$ since they're extraneous solutions.
Both $\theta=\pi / 4$ and $\theta=5 \pi / 4$ yield the same intersection point $B$. So solving algebraically did not yield the intersection point at the pole.

## Polar Curves (PART II)

## POLAR CURVES PART II: AREAS OF POLAR REGIONS

## Polar Regions (Demo)

(DEMO) POLAR REGIONS (Click below):


## Area of a Sector



## Proposition

The area of a sector with radius $r$ that sweeps an angle $\theta$ is:

$$
\text { Area of } \operatorname{Sector}(r, \theta)=\frac{1}{2} r^{2} \theta
$$

## Area of a Sector



## Proposition

The area of a sector with radius $r$ that sweeps an angle $\theta$ is:

$$
\text { Area of } \operatorname{Sector}(r, \theta)=\frac{1}{2} r^{2} \theta
$$

PROOF: Area of $\operatorname{Circle}(r)=\pi r^{2}$.
But a circle is just a sector that sweeps an angle of $2 \pi$ radians.
$\Longrightarrow$ Area of $\operatorname{Sector}(r, \theta)=\left(\frac{\theta}{2 \pi}\right)[$ Area of Circle $(r)]=\left(\frac{\theta}{2 \pi}\right)\left(\pi r^{2}\right)=\frac{1}{2} r^{2} \theta$ QED

## Area of a Polar Region bounded by One Polar Curve

Let $D$ be the region bounded by polar curve $r=f(\theta)$ and rays $\theta=\alpha, \theta=\beta$.


## Area of a Polar Region bounded by One Polar Curve



Subdivide polar region into $N$ sectors and with tags $\theta_{1}^{*}, \theta_{2}^{*}, \ldots$.

## Area of a Polar Region bounded by One Polar Curve

Consider the $k^{\text {th }}$ Sector:


## Area of a Polar Region bounded by One Polar Curve



## Area of a Polar Region bounded by One Polar Curve



## Area of a Polar Region bounded by One Polar Curve



Riemann Sum: $\operatorname{Area}(D) \approx A_{N}^{*}:=\sum_{k=1}^{N} \frac{1}{2}\left[f\left(\theta_{k}^{*}\right)\right]^{2} \Delta \theta_{k}$

## Area of a Polar Region bounded by One Polar Curve



Integral: Area $(D)=\lim _{N \rightarrow \infty} A_{N}^{*}=\int_{\text {smallest } \theta \text {-value in } D}^{\text {largest } \theta \text {-value in } D} \frac{1}{2}[f(\theta)]^{2} d \theta=\int_{\alpha}^{\beta} \frac{1}{2}[f(\theta)]^{2} d \theta$

## Radially-Simple ( $r$-Simple) Polar Regions (Definition)



Above, the inner BC is $r=g_{1}(\theta)$ \& the outer BC is $r=g_{2}(\theta)$. Notice, the inner BC \& outer BC are both traced for $\theta \in[\alpha, \beta]$.

## Definition

A region $D \subset \mathbb{R}^{2}$ is radially-simple ( $r$-Simple) if
$D$ has one inner $\mathbf{B C}$ \& one outer $\mathbf{B C}$, both traced over the same $\theta$-values.

## Radially-Simple ( $r$-Simple) Polar Regions (Definition)



Above, the inner BC is $r=g_{1}(\theta)$ \& the outer BC is $r=g_{2}(\theta)$. Notice, the inner BC \& outer BC are both traced for $\theta \in[\alpha, \beta]$.

## Definition

A region $D \subset \mathbb{R}^{2}$ is radially-simple ( $r$-Simple) if
$D$ has one inner $\mathbf{B C}$ \& one outer $\mathbf{B C}$, both traced over the same $\theta$-values.

## Radially-Simple ( $r$-Simple) Polar Regions (Definition)



Above, the inner BC is the pole $(r=0)$ \& the outer $\mathbf{B C}$ is $r=f(\theta)$. Notice, the outer BC is traced for $\theta \in[\alpha, \beta]$.

## Definition

A region $D \subset \mathbb{R}^{2}$ is radially-simple ( $r$-Simple) if
$D$ has the pole as the inner BC \& only one outer BC.

## Radially-Simple ( $r$-Simple) Polar Regions (Definition)



Above, the inner $\mathbf{B C}$ is the pole $(r=0)$ \& the outer $\mathbf{B C}$ is $r=f(\theta)$.
i.e., $r$-Simple regions can be swept radially from the pole (with rays [in blue]) where each ray enters the same inner BC \& exits the same outer BC.

## Quasi-Radially-Simple (Quasi- $r$-Simple) Polar Region



Above, the inner BC is $r=g_{1}(\theta)$ \& the outer $\mathbf{B C}$ is $r=g_{2}(\theta)$.
Notice, inner BC is traced for $\theta \in[\alpha, \beta]$ \& outer BC is traced for $\theta \in[\gamma, \delta]$.

## Definition

A region $D \subset \mathbb{R}^{2}$ is quasi-radially-simple (Quasi- $r$-Simple) if
$D$ has one inner BC \& one outer $\mathbf{B C}$, each traced over different $\theta$-values.

## Region that's neither $r$-Simple nor Quasi- $r$-Simple



## Pole

How to handle a polar region that lacks (quasi-) radial simplicity???

## Region that's neither $r$-Simple nor Quasi- $r$-Simple



Subdivide polar region radially from the pole through appropriate BP.
Then, $D=D_{1} \cup D_{2} \Longrightarrow \operatorname{Area}(D)=\operatorname{Area}\left(D_{1}\right)+\operatorname{Area}\left(D_{2}\right)$

## Area of a Radially Simple ( $r$-Simple) Polar Region



## Proposition

Let $D$ be a $r$-simple region as shown above.
Then:

$$
\text { Area }(D)=\int_{\text {Smallest } \theta \text {-value in } D}^{\text {Largest } \theta \text {-value in } D} \frac{1}{2}(\text { Outer BC of } D)^{2} d \theta=\int_{\alpha}^{\beta} \frac{1}{2}[f(\theta)]^{2} d \theta
$$

## Area of a Radially Simple ( $r$-Simple) Polar Region



## Proposition

Let $D$ be a $r$-simple region as shown above. Then:

$$
\operatorname{Area}(D)=\frac{1}{2} \int_{\text {Smallest } \theta \text {-value in } D}^{\text {Largest } \theta \text {-value in } D}(\text { Outer BC of } D)^{2}-(\text { Inner BC of } D)^{2} d \theta
$$

## Area of a Radially Simple ( $r$-Simple) Polar Region



## Proposition

Let $D$ be a r-simple region as shown above. Then:

$$
\operatorname{Area}(D)=\frac{1}{2} \int_{\alpha}^{\beta}\left[g_{2}(\theta)\right]^{2}-\left[g_{1}(\theta)\right]^{2} d \theta
$$

## Area of a Radially Simple ( $r$-Simple) Polar Region



## Proposition

Let $D$ be a $r$-simple region as shown above. Then:

$$
\text { Area }(D)=\frac{1}{2} \int_{\text {Smallest } \theta \text {-value in } D}^{\text {Largest } \theta \text {-value in } D}(\text { Outer BC of } D)^{2}-(\text { Inner BC of } D)^{2} d \theta
$$

## Area of a Radially Simple ( $r$-Simple) Polar Region



## Proposition

Let $D$ be a $r$-simple region as shown above. Then:

$$
\operatorname{Area}(D)=\frac{1}{2} \int_{\alpha}^{\beta}\left[g_{2}(\theta)\right]^{2}-\left[g_{1}(\theta)\right]^{2} d \theta
$$

## Area of a Quasi-r-Simple Polar Region



## Proposition

Let $D$ be a quasi- $r$-simple region as shown above. Then $\operatorname{Area}(D)=$

$$
\frac{1}{2} \int_{\text {Smallest } \theta \text { for Outer } B C}^{\text {Largest } \theta \text { for Outer } B C}(\text { Outer } B C)^{2} d \theta-\frac{1}{2} \int_{\text {Smallest } \theta \text { for Inner } B C}^{\text {Largest } \theta \text { for Inner } B C}(\text { Inner } B C)^{2} d \theta
$$

## Area of a Quasi-r-Simple Polar Region



## Proposition

Let $D$ be a quasi-r-simple region as shown above. Then:

$$
\operatorname{Area}(D)=\frac{1}{2} \int_{\gamma}^{\delta}\left[g_{2}(\theta)\right]^{2} d \theta-\frac{1}{2} \int_{\alpha}^{\beta}\left[g_{1}(\theta)\right]^{2} d \theta
$$

## Fin.

