Polar Curves: Graphs & Areas Calculus II

Josh Engwer

TTU

3 February 2014

POLAR CURVES PART I: GRAPHS OF POLAR CURVES

Convert: Rectangular Coord's \leftrightarrow Polar Coord's

REMARK: *r* can be **negative**.

Converting Polar Coord. \rightarrow Rectangular Coord.

WORKED EXAMPLE: Convert polar coordinate $(3, \pi/4)$ to rectangular form.

$$\begin{cases} x = r\cos\theta\\ y = r\sin\theta \end{cases} \implies \begin{cases} x = 3\cos(\pi/4) = (3)\left(1/\sqrt{2}\right)\\ y = 3\sin(\pi/4) = (3)\left(1/\sqrt{2}\right) \end{cases} \implies \boxed{\left(\frac{3}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right)}$$

WORKED EXAMPLE: Convert polar coord. $(-3, \pi/4)$ to rectangular form.

$$\begin{cases} x = r\cos\theta\\ y = r\sin\theta \end{cases} \implies \begin{cases} x = -3\cos(\pi/4) = (-3)\left(1/\sqrt{2}\right)\\ y = -3\sin(\pi/4) = (-3)\left(1/\sqrt{2}\right) \end{cases} \implies \boxed{\left(-\frac{3}{\sqrt{2}}, -\frac{3}{\sqrt{2}}\right)}$$

WORKED EXAMPLE: Convert polar coord. $(3, -\pi/4)$ to rectangular form.

$$\begin{cases} x = r\cos\theta\\ y = r\sin\theta \end{cases} \implies \begin{cases} x = 3\cos(-\pi/4) = (3)\left(1/\sqrt{2}\right)\\ y = 3\sin(-\pi/4) = (3)\left(-1/\sqrt{2}\right) \end{cases} \implies \boxed{\left(\frac{3}{\sqrt{2}}, -\frac{3}{\sqrt{2}}\right)}$$

WORKED EXAMPLE: Convert polar coord. $(3, 5\pi/4)$ to rectangular form.

$$\begin{cases} x = r\cos\theta\\ y = r\sin\theta \end{cases} \implies \begin{cases} x = 3\cos(5\pi/4) = (3)\left(-1/\sqrt{2}\right)\\ y = 3\sin(5\pi/4) = (3)\left(-1/\sqrt{2}\right) \end{cases} \implies \boxed{\left(-\frac{3}{\sqrt{2}}, -\frac{3}{\sqrt{2}}\right)}$$

Special Polar Curves

$\left(a \neq 0, b \neq 0, k \neq 0, n \in \mathbb{Z}_+\right)$	$\mathbb{Z}_+ \equiv$ The set of all positive integers .	
POLAR CURVE	PROTOTYPE	REMARK(S)
Rays thru Pole	$\theta = k$	Always Graph!
Horizontal Lines (Off-Pole)	$r = a \csc \theta$	Always convert!
Vertical Lines (Off-Pole)	$r = a \sec \theta$	Always convert!
Circles Centered at Pole	r = k	Always Graph!
Circles Containing Pole	$r = a\cos\theta, r = a\sin\theta$	Always Graph!
Cardioids	$r = a \pm a \cos \theta, r = a \pm a \sin \theta$	Always Graph!
Limaçons	$r = b \pm a \cos \theta, r = b \pm a \sin \theta$	Always Graph!
Roses	$r = a\cos(n\theta), r = a\sin(n\theta)$	Always Graph!
Lemniscates	$r^2 = a^2 \cos(2\theta), r^2 = a^2 \sin(2\theta)$	Always Graph!
Arithmetic Spirals	$r = k\theta$	Always Graph!

The **pole** is the origin.

$$r = a \csc \theta \iff r = \frac{a}{\sin \theta} \iff r \sin \theta = a \iff y = a$$

 $r = a \sec \theta \iff r = \frac{a}{\cos \theta} \iff r \cos \theta = a \iff x = a$

The following special polar curves are too subtle or complicated to graph and use with double integrals, and so will not be considered here:

 $\left(a \neq 0, b \neq 0, k \neq 0\right)$

- Logarithmic Spiral: $r = ae^{b\theta}$, $r = a^{k\theta}$
- Strophoid: $r = a\cos(2\theta) \sec \theta$
- Bifolium: $r = a \sin \theta \cos^2 \theta$
- Folium of Descartes: $r = \frac{3a\sin\theta\cos\theta}{\sin^3\theta + \cos^3\theta}$
- Ovals of Cassini: $r^4 + b^4 2b^2r^2\cos(2\theta) = k^4$

Graphing Polar Curves (Procedure)

• Graph $r = f(\theta)$ on the usual *xy*-plane where $x = \theta$ & y = r (**Rectangular Plot**)

Use special angles for θ : $\{0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \pi, \frac{5\pi}{4}, \frac{3\pi}{2}, \frac{7\pi}{4}, 2\pi\}$ If $f(\theta)$ has a trig fcn, set its argument to these angles & solve for θ :

$$\begin{array}{l} \textbf{e.g.} \ f(\theta) = 7\sin(2\theta) \\ \implies 2\theta \in \left\{0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \pi, \frac{5\pi}{4}, \frac{3\pi}{2}, \frac{7\pi}{4}, 2\pi\right\} \\ \implies \theta \in \left\{0, \frac{\pi}{8}, \frac{\pi}{4}, \frac{3\pi}{8}, \frac{\pi}{2}, \frac{5\pi}{8}, \frac{3\pi}{4}, \frac{7\pi}{8}, \pi\right\} \end{array}$$

2 Use the rectangular plot of $r = f(\theta)$ to trace the polar graph of $r = f(\theta)$ (**Polar Plot**)

Stop when it's clear that continuing would re-trace the polar plot.

IMPORTANT: Except for equations of lines, "connect the dots" using **smooth curves**, not line segments!

Polar Plots

REMARKS:

Even though *r* can be negative, only label key **positive** *r*-values on each ray. The **pole** is the origin, but it has no unique polar representation: $(0, \theta)$ Polar coordinates are NOT unique: $(2, \frac{7\pi}{4}) = (2, -\frac{\pi}{4}) = (-2, \frac{3\pi}{4}) = (-2, -\frac{5\pi}{4})$

Polar Plots

If necessary, include more rays in the polar plot.

WORKED EXAMPLE: Plot the polar curve $r = -2\sin\theta$.

WORKED EXAMPLE: Plot the polar curve $r = -2 \sin \theta$.

STEP 1: Identify the key θ -values.

The argument of the trig fcn should use "easy angles":

 $\implies \theta \in \left\{0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi\right\}$

These are key values to label on the horizontal axis of rectangular plot.

WORKED EXAMPLE: Plot the polar curve $r = -2 \sin \theta$.

STEP 1: Identify the key θ -values.

The argument of the trig fcn should use "easy angles":

 $\implies \theta \in \left\{0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi\right\}$

These are key values to label on the horizontal axis of rectangular plot.

STEP 2: Identify the key r-values.

Find the **range** of the curve:
$$\operatorname{Rng}\left[-2\sin\theta\right] = \left[-2,2\right]$$

The key values are the curve's max value, min value, & mid value:

$$\operatorname{Rng}\left[-2\sin\theta\right] = \left[-2,2\right] \implies \begin{cases} \operatorname{Max} \operatorname{Value} = 2\\ \operatorname{Min} \operatorname{Value} = -2 \end{cases}$$
$$\implies \operatorname{Mid} \operatorname{Value} := \frac{(\operatorname{Max} \operatorname{Value}) + (\operatorname{Min} \operatorname{Value})}{2} = \frac{2 + (-2)}{2} = 0$$

These are key values to label on the vertical axis of rectangular plot.

WORKED EXAMPLE: Plot the polar curve $r = -2 \sin \theta$.

STEP 3: Trace the **rectangular plot** of $r = -2\sin\theta$

Josh Engwer (TTU)

WORKED EXAMPLE: Plot the polar curve $r = -2\sin\theta$.

STEP 4: Trace the polar plot.

Josh Engwer (TTU)

WORKED EXAMPLE: Plot the polar curve $r = -2\sin\theta$.

Setup the axes for the polar plot.

Josh Engwer (TTU)

WORKED EXAMPLE: Plot the polar curve $r = -2\sin\theta$.

Consider the red portion of the rectangular plot (i.e. $\theta \in [0, \pi/2]$).

WORKED EXAMPLE: Plot the polar curve $r = -2\sin\theta$.

Starting Point: $\theta = 0 \implies r = 0$.

Josh Engwer (TTU)

WORKED EXAMPLE: Plot the polar curve $r = -2\sin\theta$.

$$\theta = 0, r = 0 \implies$$
 pole.

WORKED EXAMPLE: Plot the polar curve $r = -2\sin\theta$.

Ending Point: $\theta = \pi/2 \implies r = -2$.

WORKED EXAMPLE: Plot the polar curve $r = -2\sin\theta$.

 $\theta = \pi/2, r = -2 \implies$ March 2 units in **opposite direction** from $\theta = \pi/2$.

WORKED EXAMPLE: Plot the polar curve $r = -2\sin\theta$.

In Between: For $\theta \in (0, \pi/2) \subseteq QI$, r < 0 and r departs from zero.

WORKED EXAMPLE: Plot the polar curve $r = -2\sin\theta$.

In Between: Trace a smooth curve in QIII that departs from pole.

WORKED EXAMPLE: Plot the polar curve $r = -2\sin\theta$.

Consider the green portion of the rectangular plot (i.e. $\theta \in [\pi/2, \pi]$).

WORKED EXAMPLE: Plot the polar curve $r = -2\sin\theta$.

Starting Point: $\theta = \pi/2 \implies r = -2$.

WORKED EXAMPLE: Plot the polar curve $r = -2\sin\theta$.

 $\theta = \pi/2, r = -2 \implies$ March 2 units in **opposite direction** from $\theta = \pi/2$.

WORKED EXAMPLE: Plot the polar curve $r = -2\sin\theta$.

Ending Point: $\theta = \pi \implies r = 0$.

Josh Engwer (TTU)

WORKED EXAMPLE: Plot the polar curve $r = -2\sin\theta$.

$$\theta = \pi, r = 0 \implies$$
 pole.

WORKED EXAMPLE: Plot the polar curve $r = -2\sin\theta$.

In Between: For $\theta \in (\pi/2, \pi) =$ QII, r < 0 and r approaches zero.

WORKED EXAMPLE: Plot the polar curve $r = -2\sin\theta$.

In Between: Trace a smooth curve in QIV that approaches pole.

WORKED EXAMPLE: Plot the polar curve $r = -2\sin\theta$.

AND WE'RE DONE!

WORKED EXAMPLE: Plot the polar curve $r = -2\sin\theta$.

Done? Already? But why?? What about $\theta \in [\pi, 2\pi]$??

Josh Engwer (TTU)

WORKED EXAMPLE: Plot the polar curve $r = -2\sin\theta$.

Because continuing further would re-trace the same curve!

WORKED EXAMPLE: Plot the polar curve $r = -2\sin\theta$.

But let's continue anyway to see why the same curve is re-traced.....

WORKED EXAMPLE: Plot the polar curve $r = -2\sin\theta$.

Consider the blue portion of the rectangular plot (i.e. $\theta \in [\pi, 3\pi/2]$).

Josh Engwer (TTU)

WORKED EXAMPLE: Plot the polar curve $r = -2\sin\theta$.

Starting Point: $\theta = \pi \implies r = 0$.

WORKED EXAMPLE: Plot the polar curve $r = -2\sin\theta$.

$$\theta = \pi, r = 0 \implies$$
 pole.

WORKED EXAMPLE: Plot the polar curve $r = -2\sin\theta$.

Ending Point: $\theta = 3\pi/2 \implies r = 2$.

WORKED EXAMPLE: Plot the polar curve $r = -2\sin\theta$.

 $\theta = 3\pi/2, r = 2 \implies$ March 2 units in same direction as $\theta = 3\pi/2$.

WORKED EXAMPLE: Plot the polar curve $r = -2\sin\theta$.

In Between: For $\theta \in (\pi, 3\pi/2) \subseteq$ QIII, r > 0 and r departs from zero.

WORKED EXAMPLE: Plot the polar curve $r = -2\sin\theta$.

In Between: Trace a smooth curve in QIII that departs from pole.

WORKED EXAMPLE: Plot the polar curve $r = -2\sin\theta$.

Consider the black portion of the rectangular plot (i.e. $\theta \in [3\pi/2, 2\pi]$).

WORKED EXAMPLE: Plot the polar curve $r = -2\sin\theta$.

Starting Point: $\theta = 3\pi/2 \implies r = 2$.

WORKED EXAMPLE: Plot the polar curve $r = -2\sin\theta$.

 $\theta = 3\pi/2, r = 2 \implies$ March 2 units in same direction as $\theta = 3\pi/2$.

WORKED EXAMPLE: Plot the polar curve $r = -2\sin\theta$.

Ending Point: $\theta = 2\pi \implies r = 0$.

Josh Engwer (TTU)

WORKED EXAMPLE: Plot the polar curve $r = -2\sin\theta$.

$$\theta = 2\pi, r = 0 \implies \text{pole.}$$

WORKED EXAMPLE: Plot the polar curve $r = -2\sin\theta$.

In Between: For $\theta \in (3\pi/2, 2\pi) \subseteq QIV$, r > 0 and r approaches zero.

WORKED EXAMPLE: Plot the polar curve $r = -2\sin\theta$.

In Between: Trace a smooth curve in QIV that approaches pole.

WORKED EXAMPLE: Plot the polar curve $r = -2\sin\theta$.

Moral: NEVER RE-TRACE THE SAME POLAR CURVE!

Polar Plots (Demo)

(DEMO) POLAR PLOTS (Click below):

<u>TASK</u>: Find all intersection points of the polar curves $r = f(\theta) \& r = g(\theta)$.

- Solving $f(\theta) = g(\theta)$ finds <u>some</u>, but not necessarily all, intersection points.
- In particular, intersections at the **pole** are nearly impossible to find algebraically because the pole has no single representation in polar coordinates that satisfies both $r = f(\theta) \& r = g(\theta)$.
- Therefore, to find <u>all</u> intersection points, graph both curves!

Intersection of Two Polar Curves (Example)

 $2\sin\theta = 2\cos\theta \implies \cos\theta(\tan\theta - 1) = 0 \implies \cos\theta = 0$ or $\tan\theta = 1$ $\implies \theta \in {\pi/2, 3\pi/2}$ or $\theta \in {\pi/4, 5\pi/4}$ Discard $\theta = \pi/2$ & $\theta = 3\pi/2$ since they're **extraneous solutions**. Both $\theta = \pi/4$ and $\theta = 5\pi/4$ yield the same intersection point *B*. So solving algebraically did not yield the intersection point at the pole.

POLAR CURVES PART II: AREAS OF POLAR REGIONS

Polar Regions (Demo)

(DEMO) POLAR REGIONS (Click below):

Proposition

The area of a sector with radius *r* that sweeps an angle θ is:

Area of Sector(
$$r, \theta$$
) = $\frac{1}{2}r^2\theta$

Area of a Sector

Proposition

The area of a sector with radius r that sweeps an angle θ is:

Area of Sector(
$$r, \theta$$
) = $\frac{1}{2}r^2\theta$

<u>PROOF</u>: Area of Circle(r) = πr^2 .

But a circle is just a sector that sweeps an angle of 2π radians.

$$\implies \text{Area of Sector}(r,\theta) = \left(\frac{\theta}{2\pi}\right) \left[\text{Area of Circle}(r)\right] = \left(\frac{\theta}{2\pi}\right) \left(\pi r^2\right) = \frac{1}{2}r^2\theta$$
QED

Let *D* be the region bounded by polar curve $r = f(\theta)$ and rays $\theta = \alpha$, $\theta = \beta$.

Subdivide polar region into N sectors and with tags $\theta_1^*, \theta_2^*, \ldots$

Consider the *k*th Sector:

59 / 77

Riemann Sum: Area(
$$D$$
) $pprox A_N^* := \sum_{k=1}^N rac{1}{2} \left[f(heta_k^*)
ight]^2 \Delta heta_k$

Above, the inner BC is $r = g_1(\theta)$ & the outer BC is $r = g_2(\theta)$. Notice, the inner BC & outer BC are both traced for $\theta \in [\alpha, \beta]$.

Definition

A region $D \subset \mathbb{R}^2$ is radially-simple (*r*-Simple) if

D has one **inner BC** & one **outer BC**, both traced over the <u>same</u> θ -values.

Above, the inner BC is $r = g_1(\theta)$ & the outer BC is $r = g_2(\theta)$. Notice, the inner BC & outer BC are both traced for $\theta \in [\alpha, \beta]$.

Definition

A region $D \subset \mathbb{R}^2$ is **radially-simple (***r***-Simple)** if

D has one inner BC & one outer BC, both traced over the same θ -values.

Above, the **inner BC** is the **pole** (r = 0) & the **outer BC** is $r = f(\theta)$. Notice, the **outer BC** is traced for $\theta \in [\alpha, \beta]$.

Definition

A region $D \subset \mathbb{R}^2$ is radially-simple (*r*-Simple) if

D has the **pole** as the **inner BC** & only one **outer BC**.

Josh Engwer (TTU)

Above, the inner BC is the pole (r = 0) & the outer BC is $r = f(\theta)$.

i.e., *r*-Simple regions can be swept radially from the pole (with rays [in **blue**]) where each ray enters the **same inner BC** & exits the **same outer BC**.

Quasi-Radially-Simple (Quasi-r-Simple) Polar Region

Above, the inner BC is $r = g_1(\theta)$ & the outer BC is $r = g_2(\theta)$. Notice, inner BC is traced for $\theta \in [\alpha, \beta]$ & outer BC is traced for $\theta \in [\gamma, \delta]$.

Definition

A region $D \subset \mathbb{R}^2$ is quasi-radially-simple (Quasi-r-Simple) if

D has one inner BC & one outer BC, each traced over different θ -values.

Region that's neither r-Simple nor Quasi-r-Simple

How to handle a polar region that lacks (quasi-) radial simplicity???

Region that's neither r-Simple nor Quasi-r-Simple

Subdivide polar region radially from the pole through appropriate BP.

Then, $D = D_1 \cup D_2 \implies \operatorname{Area}(D) = \operatorname{Area}(D_1) + \operatorname{Area}(D_2)$

Proposition

Let *D* be a *r*-simple region as shown above. Then:

$$Area(D) = \int_{Smallest \,\theta \text{-value in } D}^{Largest \,\theta \text{-value in } D} \frac{1}{2} (Outer BC \text{ of } D)^2 \, d\theta = \int_{\alpha}^{\beta} \frac{1}{2} [f(\theta)]^2 \, d\theta$$

Josh Engwer (TTU)

Proposition

Let *D* be a *r*-simple region as shown above. Then:

$$Area(D) = \frac{1}{2} \int_{Smallest \ \theta \text{-value in } D}^{Largest \ \theta \text{-value in } D} (Outer \ BC \ of \ D)^2 - (Inner \ BC \ of \ D)^2 \ d\theta$$

Josh Engwer (TTU)

Proposition

Let *D* be a *r*-simple region as shown above. Then:

$${f Area}(D)=rac{1}{2}\int_{lpha}^{eta}[g_2(heta)]^2-[g_1(heta)]^2\;d heta$$

Josh Engwer (TTU)

Proposition

Let *D* be a *r*-simple region as shown above. Then:

$$Area(D) = \frac{1}{2} \int_{Smallest \ \theta \text{-value in } D}^{Largest \ \theta \text{-value in } D} (Outer \ BC \ of \ D)^2 - (Inner \ BC \ of \ D)^2 \ d\theta$$

Josh Engwer (TTU)

Proposition

Let *D* be a *r*-simple region as shown above. Then:

Area
$$(D)=rac{1}{2}\int_{lpha}^{eta}[g_2(heta)]^2-[g_1(heta)]^2\;d heta$$

Josh Engwer (TTU)

Area of a Quasi-*r*-Simple Polar Region

Proposition

Let D be a quasi-r-simple region as shown above. Then $Area(D) = \frac{1}{2} \int_{Smallest \, \theta \text{ for Outer } BC}^{Largest \, \theta \text{ for Outer } BC} (Outer BC)^2 \, d\theta - \frac{1}{2} \int_{Smallest \, \theta \text{ for Inner } BC}^{Largest \, \theta \text{ for Inner } BC} (Inner BC)^2 \, d\theta$

Josh Engwer (TTU)

Area of a Quasi-*r*-Simple Polar Region

Proposition

Let *D* be a quasi-*r*-simple region as shown above.

Then:

$$\textit{Area}(D) = rac{1}{2} \int_{\gamma}^{\delta} [g_2(heta)]^2 \ d heta - rac{1}{2} \int_{lpha}^{eta} [g_1(heta)]^2 \ d heta$$

Fin.