Arc Length \& Surface Area Calculus II

Josh Engwer

TTU

10 February 2014

Arc Length of a Curve

Let Γ be the portion of curve $f(x)$ for $x \in[a, b]$

Arc Length of a Curve

TASK: Find ArcLength (Γ)

Arc Length of a Curve

Partition curve Γ into N subarcs \& line segments

Arc Length of a Curve

Key Element: Line Segment

Arc Length of a Curve

$k^{\text {th }}$ Line Segment on $\Gamma: \begin{aligned} & \text { Width }=\Delta x_{k} \\ & \text { Height }=\Delta y_{k}\end{aligned}$

Arc Length of a Curve

$k^{\text {th }}$ Line Segment on $\Gamma: \begin{aligned} & \text { Width }=\Delta x_{k} \\ & \text { Height }=\Delta y_{k} \\ & \text { Length }=\sqrt{\left(\Delta x_{k}\right)^{2}+\left(\Delta y_{k}\right)^{2}}\end{aligned}$

Arc Length of a Curve

$k^{t h}$ Line Segment on Γ : Length $=\sqrt{\left(\Delta x_{k}\right)^{2}\left[1+\frac{\left(\Delta y_{k}\right)^{2}}{\left(\Delta x_{k}\right)^{2}}\right]}$

Arc Length of a Curve

$k^{\text {th }}$ Line Segment on Γ : Length $=\sqrt{1+\left(\frac{\Delta y_{k}}{\Delta x_{k}}\right)^{2}} \Delta x_{k}$

Arc Length of a Curve

$k^{\text {th }}$ Line Segment on Γ :
Length $=\sqrt{1+\left(\frac{\Delta y_{k}}{\Delta x_{k}}\right)^{2}} \Delta x_{k} \stackrel{M V T}{=} \sqrt{1+\left[f^{\prime}\left(x_{k}^{*}\right)\right]^{2}} \Delta x_{k}$

Arc Length of a Curve

$k^{\text {th }}$ Line Segment on Γ : Length $=\sqrt{1+\left[f^{\prime}\left(x_{k}^{*}\right)\right]^{2}} \Delta x_{k}$

Arc Length of a Curve

Riemann Sum: $\operatorname{ArcLength}(\Gamma) \approx L_{N}^{*}:=\sum_{k=1}^{N} \sqrt{1+\left[f^{\prime}\left(x_{k}^{*}\right)\right]^{2}} \Delta x_{k}$ Integral: $\operatorname{ArcLength}(\Gamma)=\lim _{N \rightarrow \infty} L_{N}^{*}=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x$

Arc Length of a Curve

Proposition

Let function $f \in C^{1}[a, b]$.
Let Γ be the portion of the curve $y=f(x)$ for $x \in[a, b]$. Then:

$$
\operatorname{ArcLength}(\Gamma)=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Proposition

Let function $g \in C^{1}[c, d]$.
Let Γ be the portion of the curve $x=g(y)$ for $y \in[c, d]$. Then:

$$
\operatorname{ArcLength}(\Gamma)=\int_{c}^{d} \sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y
$$

Arc Length of a Curve

Proposition

Let function $f \in C^{1}[a, b]$.
Let Γ be the portion of the curve $y=f(x)$ for $x \in[a, b]$. Then:

$$
\operatorname{ArcLength}(\Gamma)=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Proposition

Let function $g \in C^{1}[c, d]$.
Let Γ be the portion of the curve $x=g(y)$ for $y \in[c, d]$. Then:

$$
\operatorname{ArcLength}(\Gamma)=\int_{c}^{d} \sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y
$$

GOOD NEWS: Don't bother with characterizing the $k^{\text {th }}$ line segment. Just go straight to the integral. (i.e. memorize the above integral forms) You can do this because no region is involved (only a curve).

Arc Length of a Polar Curve

Since the Arc Length of a Curve in Rectangular Coordinates has already been established, there's no need to start from "first principles":

Let Γ be the polar curve $r=f(\theta)$ bounded by the rays $\theta=\alpha \& \theta=\beta$.
$k^{\text {th }}$ Line Segment on $\Gamma: \begin{aligned} & \text { Width }=\Delta x_{k} \\ & \text { Height }=\Delta y_{k} \\ & \text { Length }=\sqrt{\left(\Delta x_{k}\right)^{2}+\left(\Delta y_{k}\right)^{2}}\end{aligned}$

Arc Length of a Polar Curve

Since the Arc Length of a Curve in Rectangular Coordinates has already been established, there's no need to start from "first principles":

Let Γ be the polar curve $r=f(\theta)$ bounded by the rays $\theta=\alpha \& \theta=\beta$.
$k^{\text {th }}$ Line Segment on Γ : Length $=\left(\frac{\Delta \theta_{k}}{\Delta \theta_{k}}\right) \sqrt{\left(\Delta x_{k}\right)^{2}+\left(\Delta y_{k}\right)^{2}}$

Arc Length of a Polar Curve

Since the Arc Length of a Curve in Rectangular Coordinates has already been established, there's no need to start from "first principles":

Let Γ be the polar curve $r=f(\theta)$ bounded by the rays $\theta=\alpha \& \theta=\beta$.
$k^{\text {th }}$ Line Segment on Γ : Length $=\sqrt{\left(\frac{\Delta x_{k}}{\Delta \theta_{k}}\right)^{2}+\left(\frac{\Delta y_{k}}{\Delta \theta_{k}}\right)^{2}} \Delta \theta_{k}$

Arc Length of a Polar Curve

Since the Arc Length of a Curve in Rectangular Coordinates has already been established, there's no need to start from "first principles":

Let Γ be the polar curve $r=f(\theta)$ bounded by the rays $\theta=\alpha \& \theta=\beta$.
$k^{\text {th }}$ Line Segment on Γ : Length $=\sqrt{\left(\frac{\Delta x_{k}}{\Delta \theta_{k}}\right)^{2}+\left(\frac{\Delta y_{k}}{\Delta \theta_{k}}\right)^{2}} \Delta \theta_{k}$

Riemann Sum: $\operatorname{ArcLength}(\Gamma) \approx L_{N}^{*}:=\sum_{k=1}^{N} \sqrt{\left(\frac{\Delta x_{k}}{\Delta \theta_{k}}\right)^{2}+\left(\frac{\Delta y_{k}}{\Delta \theta_{k}}\right)^{2}} \Delta \theta_{k}$
Integral: $\operatorname{ArcLength}(\Gamma)=\lim _{N \rightarrow \infty} L_{N}^{*}=\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}} d \theta$

Arc Length of a Polar Curve

Since the Arc Length of a Curve in Rectangular Coordinates has already been established, there's no need to start from "first principles":

Let Γ be the polar curve $r=f(\theta)$ bounded by the rays $\theta=\alpha \& \theta=\beta$.

Integral: $\operatorname{ArcLength}(\Gamma)=\lim _{N \rightarrow \infty} L_{N}^{*}=\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}} d \theta$
$\left\{\begin{array}{l}x=r \cos \theta=f(\theta) \cos \theta \\ y=r \sin \theta=f(\theta) \sin \theta\end{array}\right.$

Arc Length of a Polar Curve

Since the Arc Length of a Curve in Rectangular Coordinates has already been established, there's no need to start from "first principles":

Let Γ be the polar curve $r=f(\theta)$ bounded by the rays $\theta=\alpha \& \theta=\beta$.

Integral: $\operatorname{ArcLength}(\Gamma)=\lim _{N \rightarrow \infty} L_{N}^{*}=\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}} d \theta$
$\left\{\begin{array}{l}x=r \cos \theta=f(\theta) \cos \theta \\ y=r \sin \theta=f(\theta) \sin \theta\end{array} \Longrightarrow\left\{\begin{array}{l}\frac{d x}{d \theta}=f^{\prime}(\theta) \cos \theta-f(\theta) \sin \theta \\ \frac{d y}{d \theta}=f^{\prime}(\theta) \sin \theta+f(\theta) \cos \theta\end{array}\right.\right.$

Arc Length of a Polar Curve

Since the Arc Length of a Curve in Rectangular Coordinates has already been established, there's no need to start from "first principles":

Let Γ be the polar curve $r=f(\theta)$ bounded by the rays $\theta=\alpha \& \theta=\beta$.

Integral: $\operatorname{ArcLength}(\Gamma)=\lim _{N \rightarrow \infty} L_{N}^{*}=\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}} d \theta$

$$
\left\{\begin{array}{l}
\frac{d x}{d \theta}=f^{\prime}(\theta) \cos \theta-f(\theta) \sin \theta \\
\frac{d y}{d \theta}=f^{\prime}(\theta) \sin \theta+f(\theta) \cos \theta
\end{array} \Longrightarrow\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}=[f(\theta)]^{2}+\left[f^{\prime}(\theta)\right]^{2}\right.
$$

Arc Length of a Polar Curve

Proposition

Let function $f \in C^{1}[\alpha, \beta]$.
Let Γ be the polar curve $r=f(\theta)$ bounded by the rays $\theta=\alpha \& \theta=\beta$. Then:

$$
\operatorname{ArcLength}(\Gamma)=\int_{\alpha}^{\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta=\int_{\alpha}^{\beta} \sqrt{[f(\theta)]^{2}+\left[f^{\prime}(\theta)\right]^{2}} d \theta
$$

Arc Length of a Polar Curve

Proposition

Let function $f \in C^{1}[\alpha, \beta]$.
Let Γ be the polar curve $r=f(\theta)$ bounded by the rays $\theta=\alpha \& \theta=\beta$. Then:

$$
\operatorname{ArcLength}(\Gamma)=\int_{\alpha}^{\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta=\int_{\alpha}^{\beta} \sqrt{[f(\theta)]^{2}+\left[f^{\prime}(\theta)\right]^{2}} d \theta
$$

GOOD NEWS: Don't bother with characterizing the $k^{h h}$ line segment. Just go straight to the integral. (i.e. memorize the above integral forms) You can do this because no region is involved (only a curve).

Surfaces of Revolution

Surfaces of Revolution

Surfaces of Revolution (V-Bands)

Axis of Revolution: x-axis

Surfaces of Revolution (H-Bands)

Axis of Revolution: y-axis

Surface Area of Surfaces Revolved about x-Axis

Let Γ be the portion of the curve $f(x)$ for $x \in[a, b]$.

Surface Area of Surfaces Revolved about x-Axis

Let S be the surface formed by revolving Γ about the x-axis.

Surface Area of Surfaces Revolved about x-Axis

TASK: Find SurfaceArea (S)

Surface Area of Surfaces Revolved about x-Axis

Partition curve Γ into N subarcs \& line segments.

Surface Area of Surfaces Revolved about x-Axis

Axis of Revolution: x-axis
$k^{\text {th }}$ V-Band on S :

Average Radius	$=\frac{1}{2}[($ Smallest Radius $)+($ Largest Radius $)]$
Slant Height	$=($ Length of generating Line Segment $)$
Surface Area	$=2 \pi \times($ Average Radius $) \times($ Slant Height $)$

Surface Area of Surfaces Revolved about x-Axis

Axis of Revolution: x-axis

> | $k^{\text {th }}$ V-Band on $S:$ | |
| :--- | :--- |
| Average Radius | $=\frac{1}{2}\left[f\left(x_{k-1}^{*}\right)+f\left(x_{k}^{*}\right)\right]$ |
| Slant Height | $=\sqrt{\left(\Delta x_{k}\right)^{2}+\left(\Delta y_{k}\right)^{2}}$ |
| Surface Area | $=2 \pi \times($ Average Radius $) \times($ Slant Height $)$ |

Surface Area of Surfaces Revolved about x-Axis

Axis of Revolution: x-axis
$k^{\text {th }}$ V-Band on S :
Average Radius $=\frac{1}{2}\left[f\left(x_{k-1}^{*}\right)+f\left(x_{k}^{*}\right)\right] \quad \approx f\left(x_{k}^{*}\right)$
Slant Height $=\sqrt{\left(\Delta x_{k}\right)^{2}+\left(\Delta y_{k}\right)^{2}}$
$\stackrel{M V T}{=} \sqrt{1+\left[f^{\prime}\left(x_{k}^{*}\right)\right]^{2}} \Delta x_{k}$ Surface Area $\approx 2 \pi f\left(x_{k}^{*}\right) \sqrt{1+\left[f^{\prime}\left(x_{k}^{*}\right)\right]^{2} \Delta x_{k}}$

Surface Area of Surfaces Revolved about x-Axis

Axis of Revolution: x-axis
$k^{\text {th }}$ V-Band on S :
Average Radius $=\frac{1}{2}\left[f\left(x_{k-1}^{*}\right)+f\left(x_{k}^{*}\right)\right] \quad \approx f\left(x_{k}^{*}\right)$
Slant Height $=\sqrt{\left(\Delta x_{k}\right)^{2}+\left(\Delta y_{k}\right)^{2}} \stackrel{M V T}{=} \sqrt{1+\left[f^{\prime}\left(x_{k}^{*}\right)\right]^{2}} \Delta x_{k}$

Surface Area $\approx 2 \pi f\left(x_{k}^{*}\right) \sqrt{1+\left[f^{\prime}\left(x_{k}^{*}\right)\right]^{2}} \Delta x_{k}$
Riemann Sum: $\operatorname{SurfaceArea~}(S) \approx S A_{N}^{*}:=\sum_{k=1}^{N} 2 \pi f\left(x_{k}^{*}\right) \sqrt{1+\left[f^{\prime}\left(x_{k}^{*}\right)\right]^{2}} \Delta x_{k}$

Surface Area of Surfaces Revolved about x-Axis

Axis of Revolution: x-axis

Riemann Sum: SurfaceArea $(S) \approx S A_{N}^{*}:=\sum_{k=1}^{N} 2 \pi f\left(x_{k}^{*}\right) \sqrt{1+\left[f^{\prime}\left(x_{k}^{*}\right)\right]^{2}} \Delta x_{k}$
Integral: SurfaceArea $(S)=\lim _{N \rightarrow \infty} S A_{N}^{*}=\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x$

Surface Area of Surfaces of Revolution

Proposition

Let function $f \in C^{1}[a, b]$.
Let Γ be the portion of the curve $y=f(x)$ for $x \in[a, b]$.
Let S be the surface formed by revolving Γ about the x-axis. Then:

$$
\operatorname{SurfaceArea}(S)=\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Proposition

Let function $g \in C^{1}[c, d]$.
Let Γ be the portion of the curve $x=g(y)$ for $y \in[c, d]$.
Let S be the surface formed by revolving Γ about the y-axis. Then:

$$
\operatorname{SurfaceArea}(S)=\int_{c}^{d} 2 \pi g(y) \sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y
$$

Surface Area of Surfaces of Revolution

Proposition

Let function $f \in C^{1}[a, b]$.
Let Γ be the portion of the curve $y=f(x)$ for $x \in[a, b]$.
Let S be the surface formed by revolving Γ about the x-axis. Then:

$$
\operatorname{SurfaceArea}(S)=\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Proposition

Let function $g \in C^{1}[c, d]$.
Let Γ be the portion of the curve $x=g(y)$ for $y \in[c, d]$.
Let S be the surface formed by revolving Γ about the y-axis. Then:

$$
\operatorname{SurfaceArea}(S)=\int_{c}^{d} 2 \pi g(y) \sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y
$$

GOOD NEWS: Just go straight to the integral.

Surface Area of Polar Surfaces of Revolution

Proposition

Let function $f \in C^{1}[\alpha, \beta]$.
Let Γ be the portion of the curve $r=f(\theta)$ bounded by rays $\theta=\alpha \& \theta=\beta$.
Let S be the surface formed by revolving Γ about the x-axis. Then:

$$
\text { SurfaceArea }(S)=\int_{\alpha}^{\beta} 2 \pi f(\theta) \sin \theta \sqrt{[f(\theta)]^{2}+\left[f^{\prime}(\theta)\right]^{2}} d \theta
$$

Proposition

Let function $f \in C^{1}[\alpha, \beta]$.
Let Γ be the portion of the curve $r=f(\theta)$ bounded by rays $\theta=\alpha \& \theta=\beta$. Let S be the surface formed by revolving Γ about the y-axis. Then:

$$
\text { SurfaceArea }(S)=\int_{\alpha}^{\beta} 2 \pi f(\theta) \cos \theta \sqrt{[f(\theta)]^{2}+\left[f^{\prime}(\theta)\right]^{2}} d \theta
$$

GOOD NEWS: Just go straight to the integral.

Fin.

