Physics Applications Calculus II

Josh Engwer

TTU

10 February 2014

Josh Engwer (TTU)

PHYSICS PART I: BASICS OF WORK, SPRINGS

Be aware of the units of measure in work problems:

Mass	Distance	Force	Work
kg	m	N	J
g	cm	dyne	erg
slug	ft	lb	ft-lb

Definition

A force on an object is a push or a pull applied to the object.

<u>REMARK:</u> The **weight** of an object is the (downward) force of **gravity** acting on the object.

Proposition

The **work** done by a <u>constant</u> force on an object moving it a <u>constant</u> distance along a straight line is defined to be:

$$ig(\textit{Work}ig) = ig(\textit{Force}ig) imes ig(\textit{Distance}ig)$$

Find the **work** done by the force F(x) in moving an object from x = a to x = b.

Partition interval [a, b] into N subintervals.

 $\begin{array}{lll} k^{th} \mbox{ Subinterval } [x_{k-1}, x_k] : \\ \mbox{Distance} &= (\mbox{Length of Subinterval}) \\ \hline \mbox{Force} & (\mbox{Assuming } \Delta x_k \mbox{ is $small}) \\ \hline \mbox{Work} &= (\mbox{Force}) \times (\mbox{Distance}) \end{array}$

$$\begin{array}{rcl} k^{th} \text{ Subinterval } & [x_{k-1}, x_k] : \\ \hline \text{Distance} &= & (\text{Length of Subinterval}) &= & \Delta x_k \\ \hline \text{Force} & & (\text{Assuming } \Delta x_k \text{ is small}) &\approx & F(x_k^*) \\ \hline \hline \text{Work} &= & (\text{Force}) \times (\text{Distance}) &\approx & F(x_k^*) \Delta x_k \\ \hline \text{Riemann Sum: Work done by force } F(x) \text{ over } [a,b] \approx W_N^* := \sum_{k=1}^N F(x_k^*) \Delta x_k \end{array}$$

Riemann Sum: Work done by force F(x) over $[a,b] \approx W_N^* := \sum_{k=1}^N F(x_k^*) \Delta x_k$ Integral: Work done by force F(x) over $[a,b] = \lim_{N \to \infty} W_N^* = \int_a^b F(x) dx$

Proposition

Let force $F \in C[a, b]$ s.t. y = F(x). Then:

Work done by force
$$F(x)$$
 over interval $[a,b] = \int_a^b F(x) dx$

Proposition

Let force $G \in C[c,d]$ s.t. x = G(y). Then:

Nork done by force
$$G(y)$$
 over interval $[c,d] = \int_{a}^{d} G(y) dy$

Josh Engwer (TTU)

Proposition

Let a spring be fixed at one end and can freely move horizontally. Moreover, the spring has **stiffness constant** k > 0.

Then the restoring force of the spring is:

F(x) = -kx

where $x \equiv$ distance from the spring's **natural length**.

<u>REMARK:</u> For our purposes, the minus sign is not absolutely necessary.

(DEMO) SPRING (HOOKE'S LAW) (Click below):

PHYSICS PART II: WORK PUMPING FLUIDS, FLUID FORCE

• Just saying the "density of a fluid" is ambiguous:

- $\delta \equiv$ Weight-density of a Fluid := Weight per Volume of Fluid
 - δ is the lowercase Greek letter "delta"
 - Common units of measure: lbs/ft³, N/m³, dynes/cm³
- $\rho \equiv$ **Mass-density** of a Fluid := Mass per Volume of Fluid
 - ρ is the Greek letter "rho"
 - Common units of measure: slugs/ft³, kg/m³, g/cm³
- Relationship between Mass-Density & Weight-Density:

•
$$\delta = \rho g$$

 g ≡ Acceleration of Gravity Common units of measure: ft/sec², m/sec², cm/sec²

WORKED EXAMPLE:

An oblique conical tank with a spout is filled with fluid as shown below:

The **mass-density** of the fluid is denoted by ρ . The **gravitational acceleration** is denoted by *g*.

Setup integral(s) to find the work done pumping all the fluid out of the spout.

Josh Engwer (TTU)

Pick a Coordinate System (by labeling one point)

Based on the chosen point, label all other key points (especially the BP's)

For clarity, remove some clutter.

Label the Left BC's & Right BC's

Label the Left BC's & Right BC's (in terms of y)

Sketch the **key element**, which is the k^{th} H-Slab of fluid. IMPORTANT: The *y*-coordinate of the k^{th} H-Slab of Fluid is **always** $y = y_k^*$.

*k*th H-Slab (of fluid):

Weight-Density	:=	
Thickness	:=	(Length of k th subinterval)
Distance to Spout	:=	(y-coord. of Spout) – $(y$ -coord. of H-Slab)
Radius		$\frac{1}{2} \times [(\text{Right BC}) - (\text{Left BC})]$
Area	:=	$\pi imes (Radius)^2$
Volume	:=	$(Area) \times (Thickness)$
Weight	:=	$(Weight-Density) \times (Volume)$
Work Done	:=	$(Weight) \times (Distance to Spout)$

Josh Engwer (TTU)

k th H-Slab (of fluid):		
Weight-Density	=	ho g
Thickness	=	Δy_k
Distance to Spout	=	$15 - y_k^*$
Radius	=	$\frac{1}{2}\left[4-\left(\frac{4}{5}y_{k}^{*}-4\right)\right]$
Area	=	$\frac{1}{4}\pi \left[4 - \left(\frac{4}{5}y_k^* - 4\right)\right]^2$
Volume	=	$\frac{1}{4}\pi\left[4-\left(\frac{4}{5}y_k^*-4\right)\right]^2\Delta y_k$
Weight	=	$\frac{1}{4}\pi\rho g \left[4-\left(\frac{4}{5}y_k^*-4\right)\right]^2 \Delta y_k$
Work Done	=	$\frac{1}{4}\pi\rho g \left(15 - y_k^*\right) \left[4 - \left(\frac{4}{5}y_k^* - 4\right)\right]^2 \Delta y_k$

Josh Engwer (TTU)

$$x = \frac{4}{5}y - 4$$
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4.10)
(4

---- u = 15

$$x = \frac{4}{5}y - 4$$

$$x = \frac{4}{5}y - 4$$

$$x = 4$$

$$y = 10$$

$$x = 4$$

$$y = 10$$

$$x = 4$$

$$y = y_{k}$$

$$y = 0$$
Riemann Sum: Work $\approx \sum_{k=1}^{N} \frac{1}{4}\pi\rho g (15 - y_{k}^{*}) \left[4 - \left(\frac{4}{5}y_{k}^{*} - 4\right)\right]^{2} \Delta y_{k}$
Integral: Work $= \left[\int_{0}^{8} \frac{1}{4}\pi\rho g (15 - y) \left[4 - \left(\frac{4}{5}y - 4\right)\right]^{2} dy\right]$

WeBWorK problems involving physics require **computation** of the integral:

Work =
$$\int_{0}^{8} \frac{1}{4} \pi \rho g(15 - y) \left[4 - \left(\frac{4}{5}y - 4\right)\right]^{2} dy$$

= $\pi \rho g \int_{0}^{8} \frac{1}{4}(15 - y) \left(8 - \frac{4}{5}y\right)^{2} dy$
= $\pi \rho g \int_{0}^{8} \frac{1}{4}(15 - y) \left(64 - \frac{64}{5}y + \frac{16}{25}y^{2}\right) dy$
= $\pi \rho g \int_{0}^{8} (15 - y) \left(16 - \frac{16}{5}y + \frac{4}{25}y^{2}\right) dy$
= $\pi \rho g \int_{0}^{8} (240 - 48y + \frac{12}{5}y^{2} - 16y + \frac{16}{5}y^{2} - \frac{4}{25}y^{3}) dy$
= $\pi \rho g \int_{0}^{8} (240 - 64y + \frac{28}{5}y^{2} - \frac{4}{25}y^{3}) dy$
= $\pi \rho g \left[240y - 32y^{2} + \frac{28}{15}y^{3} - \frac{1}{25}y^{4}\right]_{y=0}^{y=8}$
= $\pi \rho g \left[240(8) - 32(8)^{2} + \frac{28}{15}(8)^{3} - \frac{1}{25}(8)^{4}\right]$
= $\pi \rho g \left[\frac{49792}{75}\right]$ (Use a calculator for tedious arithmetic)
= $\frac{49792}{75}\pi \rho g \approx 663.893333\pi \rho g$ (For decimals, go at least 6 places)
Finally, plug in the given values for ρ and g .

Proposition

Given a fluid with weight-density δ .

Let a thin plate of area A be submerged horizontally at depth h in the fluid.

Then, the fluid force against the thin plate is defined by:

$$(\textit{Fluid Force}) = (\textit{Pressure}) \times (\textit{Area})$$

 $F = (\delta h)A$

WORKED EXAMPLE: A vertical plate is submerged in fluid as shown below:

The **weight-density** of the fluid is denoted by δ .

Setup integral(s) to find the **fluid force** against the vertical plate.

Josh Engwer (TTU)

Physics Applications

Pick a Coordinate System (by labeling one point)

Based on the chosen point, label all other key points (especially the BP's)

Label the Left BC's & Right BC's

Label the Left BC's & Right BC's (in terms of *y*) For the semicircle, the **positive** root was chosen since $x \ge 0$

Sketch the **key element**, which is the k^{th} H-Rect of the plate. IMPORTANT: The *y*-coordinate of the k^{th} H-Rect is **always** $y = y_k^*$.

k th H-Rect	(of plate):
------------------------	-------------

Weight-Density	:=	(Weight per Volume of Fluid)
Width	:=	(Length of k th subinterval)
Depth	:=	(y-coord. of Surface) – $(y$ -coord. of H-Rect)
Length	:=	(Right BC of Plate) – (Left BC of Plate)
Pressure	:=	$(Weight-Density) \times (Depth)$
Area	:=	$(\text{Length}) \times (\text{Width})$
Fluid Force	:=	$(Pressure) \times (Area)$

Riemann Sum: FluidForce(Plate) $\approx \sum_{k=1}^{N} \delta(6 - y_k^*) \left[\sqrt{1 - (y_k^*)^2} - \left(\frac{1}{2}y_k^* - \frac{5}{2}\right) \right] \Delta y_k$

Integral:
FluidForce(Plate) =
$$\int_{\text{bottom y-coord. of plate}}^{\text{top y-coord. of plate}} \delta(6-y) \left[\sqrt{1-y^2} - \left(\frac{1}{2}y - \frac{5}{2}\right) \right] dy$$

Josh Engwer (TTU)

Physics Applications

QUESTION: What if a different coordinate system is chosen???

QUESTION: What if a different coordinate system is chosen??? **ANSWER:** The integral expression will change, but the value will be same!

Pick a different Coordinate System. Now, the point (0,0) is at the bottom-left BP of thin plate.

Based on the chosen point, label all other key points (especially the BP's)

Label the Left BC's & Right BC's

Label the Left BC's & Right BC's (in terms of *y*) For the semicircle, the **positive** root was chosen since $x \ge 3$

Sketch the **key element**, which is the k^{th} H-Rect of the plate. IMPORTANT: The *y*-coordinate of the k^{th} H-Rect is **always** $y = y_k^*$.

k th H-Rect (of plate):					
Weight-Density	:=	(Weight per Volume of Fluid)			
Width	:=	(Length of k th subinterval)			
Depth	:=	(y-coord. of Surface) – $(y$ -coord. of H-Rect)			
Length	:=	(Right BC of Plate) – (Left BC of Plate)			
Pressure	:=	$(Weight-Density) \times (Depth)$			
Area	:=	$(\text{Length}) \times (\text{Width})$			
Fluid Force	:=	$(Pressure) \times (Area)$			

48 / 63

kth H-Rect (of plate): Weight-Density = δ Width Δy_k =Depth $7 - y_{k}^{*}$ = $3 + \sqrt{1 - (y_k^* - 1)^2} - \frac{1}{2}y_k^*$ Length Pressure $\delta(7-y_{k}^{*})$ = $\left[3 + \sqrt{1 - (y_k^* - 1)^2} - \frac{1}{2}y_k^*\right] \Delta y_k$ Area = $\delta(7-y_k^*) \left| 3 + \sqrt{1-(y_k^*-1)^2} - \frac{1}{2}y_k^* \right| \Delta y_k$ Fluid Force = Josh Engwer (TTU) **Physics Applications** 10 February 2014

Riemann Sum: FluidForce(Plate) $\approx \sum_{k=1}^{N} \delta(7 - y_k^*) \left[3 + \sqrt{1 - (y_k^* - 1)^2} - \frac{1}{2} y_k^*\right] \Delta y_k$

FluidForce(Plate) =
$$\int_{\text{bottom y-coord. of plate}}^{\text{top y-coord. of plate}} \delta(7-y) \left[3 + \sqrt{1 - (y-1)^2} - \frac{1}{2}y\right] dy$$

So, even though two different coordinate systems were used (which resulted in two different integral expressions), the values of both integral expressions are the same:

$$\int_{-1}^{1} \delta(6-y) \left[\sqrt{1-y^2} - \left(\frac{1}{2}y - \frac{5}{2}\right) \right] dy = \left(3\pi + \frac{91}{3}\right) \delta$$
$$\int_{0}^{2} \delta(7-y) \left[3 + \sqrt{1-(y-1)^2} - \frac{1}{2}y\right] dy = \left(3\pi + \frac{91}{3}\right) \delta$$

PHYSICS PART III: CENTROIDS

Centroids

Given lamina given above and uniform (constant) mass-density p.

Setup integrals to find the **moments** about the *x*-axis & *y*-axis of lamina *R*.

Centroids

As usual, label all BP's and BC's.

Josh Engwer (TTU)

Physics Applications

Centroids

Key element: V-Rect

kth V-Rect:

Mass-Density	:=	(Mass per Area of Lamina)
Width	:=	(Length of k^{th} subinterval)
Height	:=	(Top BC) – (Bottom BC)
Centroid (\bar{x}_k, \bar{y}_k)	:=	(Geometric Center of V-Rect)
Mass Δm_k	:=	$(Mass-Density) \times (Area)$
Moment about y-axis	:=	$\bar{x}_k \Delta m_k$
Moment about <i>x</i> -axis	:=	$\bar{y}_k \Delta m_k$

kth V-Rect: Mass-Density ρ Width Δx_k Height $= f(x_k^*) - g(x_k^*)$ Centroid (\bar{x}_k, \bar{y}_k) $(x_k^*, \frac{1}{2}[f(x_k^*) + g(x_k^*)])$ = Mass Δm_k $= \rho[f(x_k^*) - g(x_k^*)]\Delta x_k$ Moment about y-axis $= \rho x_k^* [f(x_k^*) - g(x_k^*)] \Delta x_k$ $= \frac{1}{2}\rho[f(x_k^*) + g(x_k^*)][f(x_k^*) - g(x_k^*)]\Delta x_k$ Moment about *x*-axis

k th V-Rect:		
Mass-Density	=	ho
Width	=	Δx_k
Height		$f(x_k^*) - g(x_k^*)$
Centroid (\bar{x}_k, \bar{y}_k)	=	$(x_k^*, \frac{1}{2}[f(x_k^*) + g(x_k^*)])$
Mass Δm_k	=	$\rho[f(x_k^*) - g(x_k^*)]\Delta x_k$
Moment about y-axis	=	$\rho x_k^* [f(x_k^*) - g(x_k^*)] \Delta x_k$
Moment about x-axis	=	$\frac{1}{2}\rho\left([f(x_k^*)]^2 - [g(x_k^*)]^2\right)\Delta x_k$

Mass of Lamina
$$\approx \sum_{k=1}^{N} \rho[f(x_k^*) - g(x_k^*)]\Delta x_k$$

Moment about *y*-axis $\approx \sum_{k=1}^{N} \rho x_k^* [f(x_k^*) - g(x_k^*)]\Delta x_k$
Moment about *x*-axis $\approx \sum_{k=1}^{N} \frac{1}{2} \rho \left([f(x_k^*)]^2 - [g(x_k^*)]^2 \right) \Delta x_k$

Mass of Lamina
$$\equiv m = \int_{a}^{b} \rho[f(x) - g(x)] dx$$

Moment about *y*-axis $\equiv M_{y} = \int_{a}^{b} \rho x[f(x) - g(x)] dx$
Moment about *x*-axis $\equiv M_{x} = \int_{a}^{b} \frac{1}{2} \rho \left([f(x)]^{2} - [g(x)]^{2} \right) dx$
Centroid of Lamina $\equiv (\bar{x}, \bar{y}) = \left(\frac{M_{y}}{m}, \frac{M_{x}}{m} \right)$

Fin.