Physics Applications
 Calculus II

Josh Engwer

TTU

10 February 2014

Physics (PART I)

PHYSICS PART I:

BASICS OF WORK, SPRINGS

Units of Measure in Physics

Be aware of the units of measure in work problems:

Mass	Distance	Force	Work
kg	m	N	J
g	cm	dyne	erg
slug	ft	lb	$\mathrm{ft}-\mathrm{lb}$

Work Done by a Constant Force along a Straight Line

Definition

A force on an object is a push or a pull applied to the object.
REMARK: The weight of an object is the (downward) force of gravity acting on the object.

Proposition

The work done by a constant force on an object moving it a constant distance along a straight line is defined to be:

$$
(\text { Work })=(\text { Force }) \times(\text { Distance })
$$

Work Done by a Variable Force along the x-axis

Find the work done by the force $F(x)$ in moving an object from $x=a$ to $x=b$.

Work Done by a Variable Force along the x-axis

Partition interval $[a, b]$ into N subintervals.

Work Done by a Variable Force along the x-axis

$k^{\text {th }}$ Subinterval $\left[x_{k-1}, x_{k}\right]$:
Distance $=$ (Length of Subinterval)

Force	$\left(\right.$ Assuming Δx_{k} is small $)$
Work $=$	(Force $) \times($ Distance $)$

Work Done by a Variable Force along the x-axis

$k^{\text {th }}$ Subinterval $\left[x_{k-1}, x_{k}\right]$:

Distance $=$	$($ Length of Subinterval $)$
Force	$=\Delta x_{k}$
(Assuming Δx_{k} is small $)$	$\approx F\left(x_{k}^{*}\right)$
Work	$=($ Force $) \times($ Distance $)$

Work Done by a Variable Force along the x-axis

Riemann Sum: Work done by force $F(x)$ over $[a, b] \approx W_{N}^{*}:=\sum_{k=1}^{N} F\left(x_{k}^{*}\right) \Delta x_{k}$

Work Done by a Variable Force along the x-axis

Riemann Sum: Work done by force $F(x)$ over $[a, b] \approx W_{N}^{*}:=\sum_{k=1}^{N} F\left(x_{k}^{*}\right) \Delta x_{k}$ Integral: Work done by force $F(x)$ over $[a, b]=\lim _{N \rightarrow \infty} W_{N}^{*}=\int_{a}^{b} F(x) d x$

Work Done by a Variable Force along the x-axis

Proposition

Let force $F \in C[a, b]$ s.t. $y=F(x)$. Then:

$$
\text { Work done by force } F(x) \text { over interval }[a, b]=\int_{a}^{b} F(x) d x
$$

Work Done by a Variable Force along the y-axis

$$
\begin{aligned}
& y=d \text { 耳 } \\
& y=c
\end{aligned}
$$

Proposition

Let force $G \in C[c, d]$ s.t. $x=G(y)$. Then:
Work done by force $G(y)$ over interval $[c, d]=\int_{c}^{d} G(y) d y$

Work Done by Springs (Hooke's Law)

Proposition

Let a spring be fixed at one end and can freely move horizontally. Moreover, the spring has stiffness constant $k>0$.

Then the restoring force of the spring is:

$$
F(x)=-k x
$$

where $x \equiv$ distance from the spring's natural length.
REMARK: For our purposes, the minus sign is not absolutely necessary.

Work Done by Springs (Demo)

(DEMO) SPRING (HOOKE'S LAW) (Click below):

Physics (PART II)

PHYSICS PART II:

WORK PUMPING FLUIDS, FLUID FORCE

Density of Fluids

- Just saying the "density of a fluid" is ambiguous:
- $\delta \equiv$ Weight-density of a Fluid := Weight per Volume of Fluid
- δ is the lowercase Greek letter "delta"
- Common units of measure: $\mathrm{lbs} / \mathrm{ft}^{3}, \mathrm{~N} / \mathrm{m}^{3}$, dynes $/ \mathrm{cm}^{3}$
- $\rho \equiv$ Mass-density of a Fluid $:=$ Mass per Volume of Fluid
- ρ is the Greek letter "rho"
- Common units of measure: slugs $/ \mathrm{ft}^{3}, \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{~g} / \mathrm{cm}^{3}$
- Relationship between Mass-Density \& Weight-Density:
- $\delta=\rho g$
- $g \equiv$ Acceleration of Gravity

Common units of measure: $\mathrm{ft} / \mathrm{sec}^{2}, \mathrm{~m} / \mathrm{sec}^{2}, \mathrm{~cm} / \mathrm{sec}^{2}$

Work Done Pumping Fluid Out of a Tank

WORKED EXAMPLE:

An oblique conical tank with a spout is filled with fluid as shown below:

The mass-density of the fluid is denoted by ρ. The gravitational acceleration is denoted by g.

Setup integral(s) to find the work done pumping all the fluid out of the spout.

Work Done Pumping Fluid Out of a Tank

Pick a Coordinate System (by labeling one point)

Work Done Pumping Fluid Out of a Tank

Based on the chosen point, label all other key points (especially the BP's)

Work Done Pumping Fluid Out of a Tank

For clarity, remove some clutter.

Work Done Pumping Fluid Out of a Tank

Work Done Pumping Fluid Out of a Tank

Label the Left BC's \& Right BC's (in terms of y)

Work Done Pumping Fluid Out of a Tank

Sketch the key element, which is the $k^{t h} \mathrm{H}$-Slab of fluid.
IMPORTANT: The y-coordinate of the $k^{t h} \mathrm{H}$-Slab of Fluid is always $y=y_{k}^{*}$.

Work Done Pumping Fluid Out of a Tank

$k^{t h} \mathrm{H}$-Slab (of fluid):	
Weight-Density	$:=($ Mass-Density of Fluid $) \times($ Gravitational Acceleration $)$
Thickness	$:=$ (Length of $k^{t h}$ subinterval)
Distance to Spout	$:=(y$-coord. of Spout $)-(y$-coord. of H-Slab $)$
Radius	$:=\frac{1}{2} \times[($ Right BC $)-($ Left BC $)]$
Area	$:=\pi \times(\text { Radius })^{2}$
Volume	$:=$ (Area $) \times($ Thickness $)$
Weight	$:=$ (Weight-Density $) \times($ Volume $)$
Work Done	$:=$ (Weight $) \times($ Distance to Spout $)$

Work Done Pumping Fluid Out of a Tank

$k^{\text {th }} \mathrm{H}$-Slab (of fluid):

Weight-Density	$=\rho g$
Thickness	$=\Delta y_{k}$
Distance to Spout	$=15-y_{k}^{*}$
Radius	$=\frac{1}{2}\left[4-\left(\frac{4}{5} y_{k}^{*}-4\right)\right]$
Area	$=\frac{1}{4} \pi\left[4-\left(\frac{4}{5} y_{k}^{*}-4\right)\right]^{2}$
Volume	$=\frac{1}{4} \pi\left[4-\left(\frac{4}{5} y_{k}^{*}-4\right)\right]^{2} \Delta y_{k}$
Weight	$=\frac{1}{4} \pi \rho g\left[4-\left(\frac{4}{5} y_{k}^{*}-4\right)\right]^{2} \Delta y_{k}$
Work Done	$=\frac{1}{4} \pi \rho g\left(15-y_{k}^{*}\right)\left[4-\left(\frac{4}{5} y_{k}^{*}-4\right)\right]^{2} \Delta y_{k}$

Work Done Pumping Fluid Out of a Tank

Riemann Sum: Work $\approx \sum_{k=1}^{N} \frac{1}{4} \pi \rho g\left(15-y_{k}^{*}\right)\left[4-\left(\frac{4}{5} y_{k}^{*}-4\right)\right]^{2} \Delta y_{k}$

Work Done Pumping Fluid Out of a Tank

Riemann Sum: Work $\approx \sum_{k=1}^{N} \frac{1}{4} \pi \rho g\left(15-y_{k}^{*}\right)\left[4-\left(\frac{4}{5} y_{k}^{*}-4\right)\right]^{2} \Delta y_{k}$
Integral: Work $=\int_{0}^{8} \frac{1}{4} \pi \rho g(15-y)\left[4-\left(\frac{4}{5} y-4\right)\right]^{2} d y$

Work Done Pumping Fluid Out of a Tank

WeBWorK problems involving physics require computation of the integral:

$$
\begin{aligned}
\text { Work } & =\int_{0}^{8} \frac{1}{4} \pi \rho g(15-y)\left[4-\left(\frac{4}{5} y-4\right)\right]^{2} d y \\
& =\pi \rho g \int_{0}^{8} \frac{1}{4}(15-y)\left(8-\frac{4}{5} y\right)^{2} d y \\
& =\pi \rho g \int_{0}^{8} \frac{1}{4}(15-y)\left(64-\frac{64}{5} y+\frac{16}{25} y^{2}\right) d y \\
& =\pi \rho g \int_{0}^{8}(15-y)\left(16-\frac{16}{5} y+\frac{4}{25} y^{2}\right) d y \\
& =\pi \rho g \int_{0}^{8}\left(240-48 y+\frac{12}{5} y^{2}-16 y+\frac{16}{5} y^{2}-\frac{4}{25} y^{3}\right) d y \\
& =\pi \rho g \int_{0}^{8}\left(240-64 y+\frac{28}{5} y^{2}-\frac{4}{25} y^{3}\right) d y \\
& =\pi \rho g\left[240 y-32 y^{2}+\frac{28}{15} y^{3}-\frac{1}{25} y^{4}\right]_{y=8}^{y=0} \\
& =\pi \rho g\left[240(8)-32(8)^{2}+\frac{28}{15}(8)^{3}-\frac{1}{25}(8)^{4}\right] \\
& =\pi \rho g\left[\frac{49792}{75}\right] \quad \text { (Use a calculator for tedious arithmetic) } \\
& =\frac{49792}{75} \pi \rho g \approx 663.893333 \pi \rho g \quad \text { (For decimals, go at least } 6 \text { places) }
\end{aligned}
$$

Finally, plug in the given values for ρ and g.

Fluid Force against a Thin Plate Submerged Horizontally

Proposition

Given a fluid with weight-density δ. Let a thin plate of area A be submerged horizontally at depth h in the fluid. Then, the fluid force against the thin plate is defined by:

$$
\begin{gathered}
(\text { Fluid Force })=(\text { Pressure }) \times(\text { Area }) \\
F=(\delta h) A
\end{gathered}
$$

Fluid Force against a Thin Plate Submerged Vertically

WORKED EXAMPLE: A vertical plate is submerged in fluid as shown below:

The weight-density of the fluid is denoted by δ.
Setup integral(s) to find the fluid force against the vertical plate.

Fluid Force against a Thin Plate Submerged Vertically

Pick a Coordinate System (by labeling one point)

Fluid Force against a Thin Plate Submerged Vertically

Based on the chosen point, label all other key points (especially the BP's)

Fluid Force against a Thin Plate Submerged Vertically

Label the Left BC's \& Right BC's

Fluid Force against a Thin Plate Submerged Vertically

Label the Left BC's \& Right BC's (in terms of y)
For the semicircle, the positive root was chosen since $x \geq 0$

Fluid Force against a Thin Plate Submerged Vertically

Sketch the key element, which is the $k^{t h} \mathrm{H}$-Rect of the plate. IMPORTANT: The y-coordinate of the $k^{t h} \mathrm{H}$-Rect is always $y=y_{k}^{*}$.

Fluid Force against a Thin Plate Submerged Vertically

$k^{t h}$ H-Rect (of plate) $:$		
Weight-Density	$:=$	(Weight per Volume of Fluid)
Width	$:=$	(Length of $k^{\text {th }}$ subinterval $)$
Depth	$:=$	(y-coord. of Surface $)-(y$-coord. of H-Rect $)$
Length	$:=$ (Right BC of Plate $)-($ Left BC of Plate $)$	
Pressure	$:=$	(Weight-Density $) \times($ Depth $)$
Area	$:=$	(Length $) \times($ Width $)$
Fluid Force	$:=$	(Pressure $) \times($ Area $)$

Fluid Force against a Thin Plate Submerged Vertically

$k^{\text {th }} \mathrm{H}$-Rect (of plate):

Weight-Density	$=\delta$
Width	$=\Delta y_{k}$
Depth	$=6-y_{k}^{*}$
Length	$=\sqrt{1-\left(y_{k}^{*}\right)^{2}}-\left(\frac{1}{2} y_{k}^{*}-\frac{5}{2}\right)$
Pressure	$=\delta\left(6-y_{k}^{*}\right)$
Area	$=\left[\sqrt{1-\left(y_{k}^{*}\right)^{2}}-\left(\frac{1}{2} y_{k}^{*}-\frac{5}{2}\right)\right] \Delta y_{k}$
Fluid Force	$=\delta\left(6-y_{k}^{*}\right)\left[\sqrt{1-\left(y_{k}^{*}\right)^{2}}-\left(\frac{1}{2} y_{k}^{*}-\frac{5}{2}\right)\right] \Delta y_{k}$

Fluid Force against a Thin Plate Submerged Vertically

Riemann Sum:
FluidForce(Plate) $\approx \sum_{k=1}^{N} \delta\left(6-y_{k}^{*}\right)\left[\sqrt{1-\left(y_{k}^{*}\right)^{2}}-\left(\frac{1}{2} y_{k}^{*}-\frac{5}{2}\right)\right] \Delta y_{k}$

Integral:
FluidForce $($ Plate $)=\int_{\text {bottom } y \text {-coord. of plate }}^{\text {top } y \text {-coord. of plate }} \delta(6-y)\left[\sqrt{1-y^{2}}-\left(\frac{1}{2} y-\frac{5}{2}\right)\right] d y$

Fluid Force against a Thin Plate Submerged Vertically

FluidForce(Plate) $=\int_{-1}^{1} \delta(6-y)\left[\sqrt{1-y^{2}}-\left(\frac{1}{2} y-\frac{5}{2}\right)\right] d y$

Fluid Force against a Thin Plate Submerged Vertically

QUESTION: What if a different coordinate system is chosen???

Fluid Force against a Thin Plate Submerged Vertically

QUESTION: What if a different coordinate system is chosen???
ANSWER: The integral expression will change, but the value will be same!

Fluid Force against a Thin Plate Submerged Vertically

Pick a different Coordinate System.
Now, the point $(0,0)$ is at the bottom-left BP of thin plate.

Fluid Force against a Thin Plate Submerged Vertically

Based on the chosen point, label all other key points (especially the BP's)

Fluid Force against a Thin Plate Submerged Vertically

Label the Left BC's \& Right BC's

Fluid Force against a Thin Plate Submerged Vertically

Label the Left BC's \& Right BC's (in terms of y)
For the semicircle, the positive root was chosen since $x \geq 3$

Fluid Force against a Thin Plate Submerged Vertically

Sketch the key element, which is the $k^{\text {th }} \mathrm{H}$-Rect of the plate. IMPORTANT: The y-coordinate of the $k^{t h} \mathrm{H}$-Rect is always $y=y_{k}^{*}$.

Fluid Force against a Thin Plate Submerged Vertically

$k^{\text {th }} \mathrm{H}$-Rect (of plate):

| Weight-Density | $:=($ Weight per Volume of Fluid $)$ |
| :--- | :--- | :--- |
| Width | $:=\left(\right.$ Length of $k^{\text {th }}$ subinterval $)$ |
| Depth | $:=(y$-coord. of Surface $)-(y$-coord. of H-Rect $)$ |
| Length | $:=($ Right BC of Plate $)-($ Left BC of Plate $)$ |
| Pressure | $:=($ Weight-Density $) \times($ Depth $)$ |
| Area | $:=($ Length $) \times($ Width $)$ |
| Fluid Force | $:=($ Pressure $) \times($ Area $)$ |

Fluid Force against a Thin Plate Submerged Vertically

$k^{\text {th }} \mathrm{H}$-Rect (of plate):

Fluid Force against a Thin Plate Submerged Vertically

Riemann Sum:
FluidForce(Plate) $\approx \sum_{k=1}^{N} \delta\left(7-y_{k}^{*}\right)\left[3+\sqrt{1-\left(y_{k}^{*}-1\right)^{2}}-\frac{1}{2} y_{k}^{*}\right] \Delta y_{k}$

Integral:
FluidForce $($ Plate $)=\int_{\text {bottom } y \text {-coord. of plate }}^{\text {top } y \text {-coord. of plate }} \delta(7-y)\left[3+\sqrt{1-(y-1)^{2}}-\frac{1}{2} y\right] d y$

Fluid Force against a Thin Plate Submerged Vertically

FluidForce(Plate) $=\int_{0}^{2} \delta(7-y)\left[3+\sqrt{1-(y-1)^{2}}-\frac{1}{2} y\right] d y$

Fluid Force against a Thin Plate Submerged Vertically

So, even though two different coordinate systems were used (which resulted in two different integral expressions), the values of both integral expressions are the same:

$$
\begin{aligned}
& \int_{-1}^{1} \delta(6-y)\left[\sqrt{1-y^{2}}-\left(\frac{1}{2} y-\frac{5}{2}\right)\right] d y=\left(3 \pi+\frac{91}{3}\right) \delta \\
& \int_{0}^{2} \delta(7-y)\left[3+\sqrt{1-(y-1)^{2}}-\frac{1}{2} y\right] d y=\left(3 \pi+\frac{91}{3}\right) \delta
\end{aligned}
$$

Physics (PART III)

PHYSICS PART III: CENTROIDS

Centroids

Given lamina given above and uniform (constant) mass-density ρ.

Centroids

Setup integrals to find the moments about the x-axis \& y-axis of lamina R.

Centroids

As usual, label all BP's and BC's.

Centroids

Key element: V-Rect

Centroids

Centroids

$k^{t h}$ V-Rect:	
Mass-Density	$=\rho$
Width	$=\Delta x_{k}$
Height	$=f\left(x_{k}^{*}\right)-g\left(x_{k}^{*}\right)$
Centroid $\left(\bar{x}_{k}, \bar{y}_{k}\right)$	$=\left(x_{k}^{*}, \frac{1}{2}\left[f\left(x_{k}^{*}\right)+g\left(x_{k}^{*}\right)\right]\right)$
Mass Δm_{k}	$=\rho\left[f\left(x_{k}^{*}\right)-g\left(x_{k}^{*}\right)\right] \Delta x_{k}$
Moment about y-axis	$=\rho x_{k}^{*}\left[f\left(x_{k}^{*}\right)-g\left(x_{k}^{*}\right)\right] \Delta x_{k}$
Moment about x-axis	$=\frac{1}{2} \rho\left[f\left(x_{k}^{*}\right)+g\left(x_{k}^{*}\right)\right]\left[f\left(x_{k}^{*}\right)-g\left(x_{k}^{*}\right)\right] \Delta x_{k}$

Centroids

Centroids

Mass of Lamina $\approx \sum_{k=1}^{N} \rho\left[f\left(x_{k}^{*}\right)-g\left(x_{k}^{*}\right)\right] \Delta x_{k}$
Moment about y-axis $\approx \sum_{k=1}^{N} \rho x_{k}^{*}\left[f\left(x_{k}^{*}\right)-g\left(x_{k}^{*}\right)\right] \Delta x_{k}$
Moment about x-axis $\approx \sum_{k=1}^{N} \frac{1}{2} \rho\left(\left[f\left(x_{k}^{*}\right)\right]^{2}-\left[g\left(x_{k}^{*}\right)\right]^{2}\right) \Delta x_{k}$

Centroids

Mass of Lamina $\equiv m=\int_{\text {smallest } x \text {-coord. }}^{\text {largest } x \text {-coord. }} \rho[f(x)-g(x)] d x$
Moment about y-axis $\equiv M_{y}=\int_{\text {smallest } x \text {-coord. }}^{\text {largest } x \text {-coord. }} \rho x[f(x)-g(x)] d x$
Moment about x-axis $\equiv M_{x}=\int_{\text {smallest } x \text {-coord. }}^{\text {largest } x \text {-coord. }} \frac{1}{2} \rho\left([f(x)]^{2}-[g(x)]^{2}\right) d x$
Centroid of Lamina $\equiv(\bar{x}, \bar{y})=\left(\frac{M_{y}}{m}, \frac{M_{x}}{m}\right)$

Centroids

Mass of Lamina $\equiv m=\int_{a}^{b} \rho[f(x)-g(x)] d x$
Moment about y-axis $\equiv M_{y}=\int_{a}^{b} \rho x[f(x)-g(x)] d x$
Moment about x-axis $\equiv M_{x}=\int_{a}^{b} \frac{1}{2} \rho\left([f(x)]^{2}-[g(x)]^{2}\right) d x$
Centroid of Lamina $\equiv(\bar{x}, \bar{y})=\left(\frac{M_{y}}{m}, \frac{M_{x}}{m}\right)$

Fin.

