Integration by Parts (IBP)

 Calculus IIJosh Engwer

TTU

24 February 2014

Integration by Parts (Motivation)

Recall from Calculus I that there's a sum/difference rule for integration:

$$
\int[f(x) \pm g(x)] d x=\int f(x) d x \pm \int g(x) d x
$$

However, there is no "product rule" for integration:

$$
\text { i.e. } \int f(x) g(x) d x \neq\left(\int f(x) d x\right)\left(\int g(x) d x\right) \text { in general }
$$

Integration by Parts (Motivation)

Recall from Calculus I that there's no "product rule" for integration:

$$
\text { i.e. } \int f(x) g(x) d x \neq\left(\int f(x) d x\right)\left(\int g(x) d x\right) \text { in general }
$$

Integration by Parts (IBP) is the next best thing to a "product rule".

Integration by Parts (Derivation)

Recall the product rule for derivatives:

$$
\begin{aligned}
& \frac{d}{d x}[u v]=v \frac{d u}{d x}+u \frac{d v}{d x} \quad(\text { where } u, v \text { are differentiable functions of } x) \\
\Longrightarrow & d[u v]=v d u+u d v \\
\Longrightarrow & \int d[u v]=\int v d u+\int u d v \\
\Longrightarrow & u v=\int v d u+\int u d v \\
\Longrightarrow & \int u d v=u v-\int v d u
\end{aligned}
$$

Integration by Parts (Definition)

Proposition

Let $u, v \in C^{1}[a, b]$ s.t. $u(x), v(x)$ are not piecewise functions. Then:

$$
\begin{gathered}
\int u d v=u v-\int v d u \quad \text { (Indefinite Integral Form) } \\
\int_{a}^{b} u d v=[u v]_{x=a}^{x=b}-\int_{a}^{b} v d u \quad \text { (Definite Integral Form) }
\end{gathered}
$$

Integration by Parts (Purpose)

But the question is: How to choose function u \& differential $d v ? ?$?

Choosing the right function u (LIPTE Heuristic)

LIPTE Heuristic:

Whichever function type comes first in the following list choose as u :

Letter	Function Type	Example Functions
\mathbf{L}	Logarithms	$\ln x, \log y, \log g_{8} t, \ldots$
\mathbf{I}	Inverse Trig	$\arcsin x, \arctan y, \operatorname{arcsec} t, \ldots$
\mathbf{P}	Polynomials	$x, y^{2}, 5 t^{3}, \ldots$
\mathbf{T}	Trig Functions	$\sin x, \tan \theta, \sec \omega, \ldots$
\mathbf{E}	Exponentials	$e^{x}, 2^{y},\left(\frac{1}{3}\right)^{t},(-4)^{x}, \ldots$

There's no \mathbf{R} in LIPTE, so rational fens \& roots are disqualified to be u.
Once u is chosen, the remainder of the integrand must be $d v$.

If integrand involves only rational fens and/or roots, IBP is no good:
$\int \frac{d x}{(x-1)(x+7)}, \int \frac{d x}{\sqrt{x}+\sqrt[3]{x}}, \int \frac{1+\sqrt{x}}{x^{2}+1} d x$, etc...

IBP involving Compositions

Definition

A function f is a light composition $\Longleftrightarrow f$ has form $f(a x+b)$ s.t. $a, b \in \mathbb{R}$.
EXAMPLES: $\sin (\pi \theta-4), \frac{1}{3 t-2}, \sqrt{2 z-1}, \arctan (x \sqrt{5}), e^{7 y+3},(9 w-8)^{4}, \ldots$

Definition

A function f is a heavy composition $\Longleftrightarrow f$ is NOT a light composition.
EXAMPLES: $\sin (2 \arccos x), \frac{1}{\ln x}, \sqrt{e^{y}}, \arctan (1 / x), e^{\sqrt{t}}, \ln (\ln w), \ldots$

- For light compositions, immediately perform IBP, afterwards u-substitution may be necessary.
- For heavy compositions, consider u-substitution first, afterwards perform IBP.

IBP (Example)

WORKED EXAMPLE: Evaluate $I=\int x \cos x d x$.
Observe that the integrand involves a polynomial \& trig fcn.
Hence, by the LIPTE Heuristic, pick $u=x$.
IBP: Let $\left\{\begin{array}{c}u=x \\ d v=\cos x d x\end{array} \Longrightarrow\left\{\begin{array}{c}d u=d x \\ v=\int \cos x d x=\sin x\end{array}\right.\right.$
$\therefore I=\int u d v \stackrel{I B P}{=} u v-\int v d u=x \sin x-\int \sin x d x=x \sin x+\cos x+C$

IBP (Example)

WORKED EXAMPLE: Evaluate $I=\int_{0}^{\pi / 2} x \cos x d x$.
Observe that the integrand involves a polynomial \& trig fcn. Hence, by the LIPTE Heuristic, pick $u=x$.
IBP: Let $\left\{\begin{array}{c}u=x \\ d v=\cos x d x\end{array} \Longrightarrow\left\{\begin{array}{c}d u=d x \\ v=\int \cos x d x=\sin x\end{array}\right.\right.$
$I=\int_{0}^{\pi / 2} u d v \stackrel{I B P}{=}[u v]_{x=0}^{x=\pi / 2}-\int_{0}^{\pi / 2} v d u$
$=[x \sin x]_{x=0}^{x=\pi / 2}-\int_{0}^{\pi / 2} \sin x d x$
$=(\pi / 2) \sin (\pi / 2)-(0) \sin (0)-[-\cos x]_{x=0}^{x=\pi / 2}$
$=\pi / 2-[-\cos (\pi / 2)-(-\cos (0))]$
$=\pi / 2-[-(0)+1]$
$=\pi / 2-1$

Tabular Integration (with an Indefinite Integral)

If u is a polynomial, tabular integration may be more efficient.
Tabular integration is the repeated use of IBP, but in the form of a table:
WORKED EXAMPLE: Evaluate $I=\int x \cos x d x$ using tabular integration.
Via LIPTE Heuristic, let $u=x$ and $d v=\cos x d x$.

$I \stackrel{T A B}{=} x \sin x+\cos x+C$

Tabular Integration (with a Definite Integral)

If u is a polynomial, tabular integration may be more efficient.
Tabular integration is the repeated use of IBP, but in the form of a table:
WORKED EXAMPLE: Evaluate $I=\int_{0}^{\pi / 2} x \cos x d x$ using tabular integration.
Via LIPTE Heuristic, let $u=x$ and $d v=\cos x d x$.

+		u		$d v$		Terms to Sum
-	\searrow					
+	\searrow			$\cos x$		
-	\searrow					
+						
$+\cos x$	\longrightarrow		$-(1)(-\cos x)=\cos x$			
+			$-\sin x$	\longrightarrow	$+(0)(-\sin x)=0$	

$I \stackrel{T A B}{=}[x \sin x+\cos x]_{x=0}^{x=\pi / 2} \stackrel{F T C}{=}\left(\frac{\pi}{2}\right) \sin \left(\frac{\pi}{2}\right)+\cos \left(\frac{\pi}{2}\right)-(0) \sin (0)-\cos (0)=\frac{\pi}{2}-1$

IBP (Flowchart)

Fin.

