Partial Fraction Decomposition (PFD)

Calculus II

Josh Engwer

TTU

05 March 2014

Degree of a Polynomial

Recall from Algebra the degree of a polynomial:

Definition

The degree of a polynomial is the power of its highest-power term.

$\operatorname{deg}\left[7 x^{5}-x^{4}+2 x^{3}+11 x^{2}-8 x+17\right]$	$=$	5
$\operatorname{deg}\left[16-x-x^{7}+3 x^{9}+x^{12}\right]$	$=$	12
$\operatorname{deg}\left[x^{4}-x^{2}-1\right]$	$=$	4
$\operatorname{deg}\left[-8-x^{3}\right]$	$=$	3
$\operatorname{deg}\left[3 x^{2}-5 x+7\right]$	$=$	2
$\operatorname{deg}[6-2 x]$	$=$	1
$\operatorname{deg}[37]$	$=$	0

REMARK:

Negative powers are not polynomials: $1-3 x^{-1}+5 x^{-2}=1-\frac{3}{x}+\frac{5}{x^{2}}$

Factoring Polynomials (Review)

Monomial Factoring:

$$
\begin{array}{ll}
8 x^{6}+2 x^{4} & =2 x^{4}\left(4 x^{2}+1\right) \\
x^{3}+3 x^{2}+9 x+27 & =\left(x^{2}+9\right)(x+3) \\
x^{2}-y^{2} & =(x+y)(x-y) \\
x^{3}-y^{3} & =(x-y)\left(x^{2}+x y+y^{2}\right) \\
x^{3}+y^{3} & =(x+y)\left(x^{2}-x y+y^{2}\right)
\end{array}
$$

Factoring by Grouping: Difference of Squares: Difference of Cubes: Sum of Cubes:

REMARK: All $5^{\text {th }}$-degree or higher polynomials will be factored a priori.

Irreducible Quadratics

Definition

Let $a, b, c \in \mathbb{R}$. Then:
The discriminant of quadratic $a x^{2}+b x+c$ is defined to be $b^{2}-4 a c$.

Definition

Let $a, b, c \in \mathbb{R}$. Then:
Quadratic $a x^{2}+b x+c$ is an irreducible quadratic $\Longleftrightarrow b^{2}-4 a c<0$.
i.e., the linear factors of an irreducible quadratic are complex (not real):
(Recall that the imaginary number $i=\sqrt{-1}$.)

- $x^{2}+1$ is irreducible since $x^{2}+1=(x-i)(x+i) \quad\left[b^{2}-4 a c=-4<0\right]$
- $x^{2}-1$ is reducible since $x^{2}-1=(x-1)(x+1) \quad\left[b^{2}-4 a c=4>0\right]$
- $x^{2}+2 x+2$ is irreducible since $x^{2}+2 x+2=[x+(1-i)][x+(1+i)]$ $\left[b^{2}-4 a c=-4<0\right]$

Fundamental Theorem of Algebra (FTA)

Theorem

(Fundamental Theorem of Algebra)
Every $n^{\text {th }}$-degree polynomial with complex coefficients can be factored into n linear factors with complex coefficients, some of which may be repeated.

Corollary

Every $n^{\text {th }}$-degree polynomial with real coefficients can be factored into linears \& irreducible quadratics with real coefficients.

REMARK: The FTA provides no procedure for factoring!

- $x^{4}+1=\left(x^{2}+\sqrt{2} x+1\right)\left(x^{2}-\sqrt{2} x+1\right)$
- $x^{5}-1=(x-1)\left(x^{2}+\frac{1+\sqrt{5}}{2} x+1\right)\left(x^{2}+\frac{1-\sqrt{5}}{2} x+1\right)$
- $x^{5}+1=(x+1)\left(x^{2}-\frac{1+\sqrt{5}}{2} x+1\right)\left(x^{2}-\frac{1-\sqrt{5}}{2} x+1\right)$
- $x^{6}-1=(x-1)(x+1)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)$
- $x^{6}+1=\left(x^{2}+1\right)\left(x^{2}+\sqrt{3} x+1\right)\left(x^{2}-\sqrt{3} x+1\right)$

Integration of Rational Functions \& Roots

Partial Fraction Decomposition is used to integrate rational fens \& roots:
$\int \frac{d x}{(x-1)(x+7)}, \quad \int \frac{d x}{\sqrt{x}+\sqrt[3]{x}}, \int \frac{1+\sqrt{x}}{x^{2}+1} d x, \int \frac{\cos x}{\sin ^{2} x+\sin x} d x, \ldots$

Polynomial Division

Proposition

Let $N(x), D(x)$ be polynomials such that $\operatorname{deg}[N(x)] \geq \operatorname{deg}[D(x)]$. Then:

$$
\frac{N(x)}{D(x)}=Q(x)+\frac{R(x)}{D(x)}
$$

where $Q(x), R(x)$ are polynomials s.t. $\operatorname{deg}[R(x)]<\operatorname{deg}[D(x)]$

Polynomial Division (Example)

WORKED EXAMPLE: Simplify $\frac{x^{5}+4 x^{3}-x^{2}-6}{x^{3}-x+4}$.

$$
\begin{array}{r}
r \\
x^{3}+0 x^{2}-x+4 \begin{array}{r}
x^{2}+0 x+5 \\
x^{5}+0 x^{4}+4 x^{3}-x^{2}+0 x-6 \\
-x^{5}-0 x^{4}+x^{3}-4 x^{2}
\end{array} \\
\\
\begin{array}{r}
5 x^{3}-5 x^{2}+0 x \\
-0 x^{4}-0 x^{3}-0 x^{2}-0 x
\end{array} \\
\hline \frac{5 x^{3}-5 x^{2}+0 x-6}{-5 x^{3}-0 x^{2}+5 x-20} \\
\hline-5 x^{2}+5 x-26
\end{array}
$$

$\therefore \frac{x^{5}+4 x^{3}-x^{2}-6}{x^{3}-x+4}=x^{2}+5+\frac{-5 x^{2}+5 x-26}{x^{3}-x+4}$

PFD (Distinct Factors)

Let $p_{1}, p_{2}, q_{1}, q_{2}, a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2} \in \mathbb{R}$. Then:

$$
\begin{gathered}
\frac{1}{\left(p_{1} x+q_{1}\right)\left(p_{2} x+q_{2}\right)} \stackrel{P F D}{=} \frac{A_{1}}{p_{1} x+q_{1}}+\frac{A_{2}}{p_{2} x+q_{2}} \\
\frac{1}{\left(a_{1} x^{2}+b_{1} x+c_{1}\right)\left(a_{2} x^{2}+b_{2} x+c_{2}\right)} \stackrel{P F D}{=} \frac{B_{1} x+C_{1}}{a_{1} x^{2}+b_{1} x+c_{1}}+\frac{B_{2} x+C_{2}}{a_{2} x^{2}+b_{2} x+c_{2}}
\end{gathered}
$$

where $\quad A_{1}, A_{2}, B_{1}, B_{2}, C_{1}, C_{2} \in \mathbb{R}$
WORKED EXAMPLE: $\frac{1-3 x}{x^{2}-5 x+6}=\frac{1-3 x}{(x-2)(x-3)} \stackrel{P F D}{=} \frac{A}{x-2}+\frac{B}{x-3}$
WORKED EXAMPLE: $\frac{x^{3}+2 x^{2}-7}{x(x-1)\left(x^{2}+7\right)} \stackrel{P F D}{=} \frac{A}{x}+\frac{B}{x-1}+\frac{\widehat{C} x+D}{x^{2}+7}$

PFD (Repeated Factors)

Let $p, q \in \mathbb{R}$ and $m, n \in \mathbb{N}$. Then:

$$
\frac{1}{(p x+q)^{m}} \stackrel{P F D}{=} \frac{A_{1}}{p x+q}+\frac{A_{2}}{(p x+q)^{2}}+\frac{A_{3}}{(p x+q)^{3}}+\cdots+\frac{A_{m}}{(p x+q)^{m}}
$$

$$
\frac{1}{\left(a x^{2}+b x+c\right)^{n}} \stackrel{P F D}{=} \frac{B_{1} x+C_{1}}{a x^{2}+b x+c}+\frac{B_{2} x+C_{2}}{\left(a x^{2}+b x+c\right)^{2}}+\cdots+\frac{B_{n} x+C_{n}}{\left(a x^{2}+b x+c\right)^{n}}
$$

where $\quad A_{1}, A_{2}, \ldots, A_{m} \in \mathbb{R}$

$$
B_{1}, B_{2}, \ldots, B_{n} \in \mathbb{R}
$$

$C_{1}, C_{2}, \ldots, C_{n} \in \mathbb{R}$

$$
\begin{aligned}
& \text { WORKED EXAMPLE: } \frac{9}{(2 x+5)^{3}} \stackrel{P F D}{=} \frac{A}{2 x+5}+\frac{B}{(2 x+5)^{2}}+\frac{\widehat{C}}{(2 x+5)^{3}} \\
& \text { WORKED EXAMPLE: } \frac{1}{\left(x^{2}-x+5\right)^{2}} \stackrel{P F D}{=} \frac{A x+B}{x^{2}-x+5}+\frac{\widehat{C} x+D}{\left(x^{2}-x+5\right)^{2}}
\end{aligned}
$$

PFD (Example)

WORKED EXAMPLE: Compute $I=\int \frac{1-3 x}{(x-2)(x-3)} d x$.

$$
\frac{1-3 x}{(x-2)(x-3)} \stackrel{P F D}{=} \frac{A}{x-2}+\frac{B}{x-3}
$$

Multiply both sides by the denominator: $1-3 x=A(x-3)+B(x-2)$
Distribute terms: $1-3 x=A x-3 A+B x-2 B$
Collect like terms: $-3 x+1=(A+B) x+(-3 A-2 B)$
Equate like terms: $\left\{\begin{array}{rlr}A & +B & =-3 \\ -3 A & -2 B & =1\end{array}\right.$
Solve linear system: $A=5, B=-8$

$$
\begin{aligned}
& \therefore \int \frac{1-3 x}{(x-2)(x-3)} d x \stackrel{P F D}{=} \int \frac{5}{x-2} d x-\int \frac{8}{x-3} d x \\
& =5 \ln |x-2|-8 \ln |x-3|+C=\ln \left|\frac{(x-2)^{5}}{(x-3)^{8}}\right|+C
\end{aligned}
$$

PFD (Procedure)

TASK: Compute $I=\int \frac{N(x)}{D(x)} d x, \quad$ where $N(x), D(x)$ are polynomials.

- STEP 1: If $\operatorname{deg}[N(x)] \geq \operatorname{deg}[D(x)]$, then perform polynomial division.
- STEP 2: Factor denominator $D(x)$ into linear factors \& irreducible quadratics.
- STEP 3: Write out the PFD with the unknown numerators.
- STEP 4: Multiply both sides by the denominator.
- STEP 5: Distribute all terms.
- STEP 6: Collect all like terms.
- STEP 7: Equate all like terms.
- STEP 8: Solve resulting linear system.
- STEP 9: The resulting integrals are now simple(r) to work with.
- REMARK: A change of variables (CV) or completing the square (CS) may be necessary.

Fin.

