Improper Integrals

Calculus II

Josh Engwer

TTU

10 March 2014

Limits of Functions (Toolkit)

```
TASK: Evaluate limit (if it exists): \lim_{x \to x_0} f(x)
READ: "The limit as x approaches x_0 of f(x)"
```

- Naïve Substitution (NS)
- Factor Polynomial(s) & cancel like factors
- Rationalize Numerator/Denominator (RN/RD)
- Combine Fractions
- Throw a factor downstairs (TFD)
- Change of Variables (CV): Let u = g(x), then limit becomes $\lim_{u \to g(x_0)} h(u)$
- Apply a Trig Identity
- L'Hôpital's Rule (LHOP)
- Find One-Sided Limits first
- Sketch the Function
- Squeeze Theorem
- Build a Table TOO INACCURATE!
- δ-ε definition of limit TOO HARD!

Limits of Functions (Infinity)

- Remember, ∞ is **not a real number**, but rather a **symbol** indicating **growth without bound**.
- Similarly, $-\infty$ indicates **decay without bound**.
- However, $\pm \infty$ satisfy some arithmetic properties that agree with intuition $(x \in \mathbb{R}, n \in \mathbb{N})$:

•
$$\infty + \infty = \infty$$
 $-\infty - \infty = -\infty$

$$\bullet \ \infty + x = x + \infty = \infty$$

$$\bullet$$
 $-\infty + x = x - \infty = -\infty$

•
$$(\infty)(\infty) = \infty$$
, $(-\infty)(-\infty) = \infty$

$$\bullet$$
 $(-\infty)(\infty) = -\infty$, $(\infty)(-\infty) = -\infty$

•
$$x > 0 \implies x \cdot \infty = \infty$$
 and $x \cdot (-\infty) = -\infty$

•
$$x < 0 \implies x \cdot \infty = -\infty$$
 and $x \cdot (-\infty) = \infty$

Limits of Functions (Indeterminant Forms)

Recall the seven indeterminant forms from Single Variable Calculus:

$$\frac{0}{0}, \frac{\infty}{\infty}, 0 \cdot \infty, \infty - \infty, 0^0, \infty^0, 1^\infty$$

Remember that **L'Hôpital's Rule (LHOP)** only works with $\frac{0}{0}$ or $\frac{\infty}{\infty}$:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} \stackrel{\mathit{NS}}{=} \frac{0}{0} \stackrel{\mathit{LHOP}}{=} \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} \stackrel{NS}{=} \frac{\infty}{\infty} \stackrel{LHOP}{=} \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

Convert $0^0, \infty^0, 1^\infty$ to $0 \cdot \infty$ by: Taking the natural logarithm: $\ln A^k = k \ln A$

Convert $0\cdot\infty$ to $\frac{0}{0}$ or $\frac{\infty}{\infty}$ by: Throwing a factor downstairs/upstairs

Convert $\infty-\infty$ to $\frac{\infty}{\infty}$ by: Combining fractions or Rationalizing numerator

Limits of Functions (Naïve Substitution)

WORKED EXAMPLE: Evaluate $\lim_{t\to 4} \sqrt{5+t}$.

$$\lim_{t \to 4} \sqrt{5 + t} \stackrel{NS}{=} \sqrt{5 + (4)} = \sqrt{9} = \boxed{3}$$

WORKED EXAMPLE: Evaluate $\lim_{x\to\infty} (x^{2/3} - 7)$.

$$\lim_{x \to \infty} \left(x^{2/3} - 7 \right) \stackrel{NS}{=} (\infty)^{2/3} - 7 = \infty - 7 = \boxed{\infty}$$

WORKED EXAMPLE: Evaluate $\lim_{x\to 0^+} x^2 \ln x$.

$$\lim_{x\to 0^+} x^2 \ln x \stackrel{NS}{=} 0 \cdot (-\infty) = 0 \cdot \infty \implies \text{Rewrite/Simplify Function}$$

$$= \lim_{x \to 0^+} \frac{\ln x}{1/x^2} = \frac{\ln x}{\infty} = \frac{-\infty}{\infty} = \lim_{x \to 0^+} \frac{1/x}{-2/x^3} = \lim_{x \to 0^+} -\frac{1}{2}x^2 = \frac{\ln x}{2} = -\frac{1}{2}(0)^2 = \boxed{0}$$

Unbounded Intervals

Recall from Calculus I the definitions bounded & unbounded intervals:

Definition

The following are all **bounded intervals**:

 $\begin{array}{ll} \text{Open Interval} & (a,b) \\ \text{Closed Interval} & [a,b] \\ \text{Half-open Intervals} & (a,b], [a,b) \end{array}$

Definition

The following are all unbounded intervals:

$$[a,\infty),(a,\infty),(-\infty,b],(-\infty,b),(-\infty,\infty)$$

REMARK: The real line $\mathbb{R} := (-\infty, \infty)$

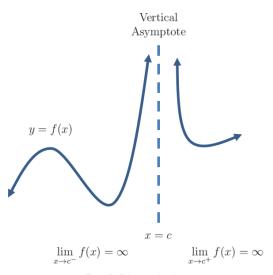
Break Discontinuities

Recall from Calculus I the definition of a break discontinuity:

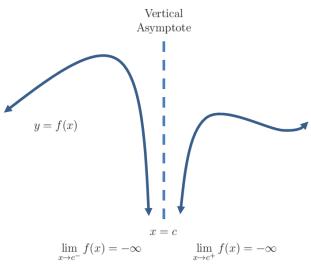
Definition

A function f has a **break discontinuity** at x=c if at least one 1-sided limit is infinite:

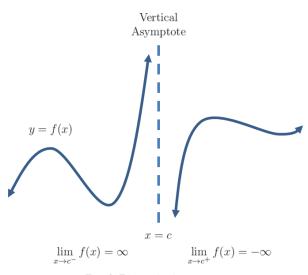
$$\left[\lim_{x\to c^-} f(x) = -\infty \text{ or } \infty\right] \text{ AND/OR } \left[\lim_{x\to c^+} f(x) = -\infty \text{ or } \infty\right]$$



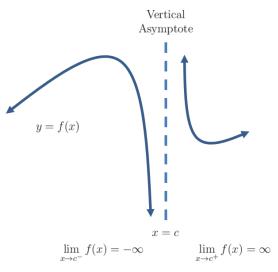
Break Discontinuity at x = c



Break Discontinuity at x = c



Break Discontinuity at x = c



Break Discontinuity at x = c

Improper Integrals

Recall from Calculus I the Fundamental Theorem of Calculus (FTC):

Theorem

Let function $f \in C^1[a,b]$. Then

$$\int_{a}^{b} f'(x) \ dx = f(b) - f(a)$$

Notice that interval [a, b] is **bounded** & f is **continuous** on [a, b].

QUESTION: What if

- the interval is unbounded??
- the function has break discontinuities??

ANSWER: The resulting integral is **improper**.

Improper Integrals (Unbounded Intervals)

Proposition

$$f \in C[a,\infty) \implies \int_a^\infty f(x) \ dx := \lim_{B \to \infty} \int_a^B f(x) \ dx$$

Proposition

$$f \in C(-\infty, b] \implies \int_{-\infty}^{b} f(x) dx := \lim_{A \to -\infty} \int_{A}^{b} f(x) dx$$

Proposition

$$f \in C(\mathbb{R}) \implies \int_{-\infty}^{\infty} f(x) \ dx := \int_{-\infty}^{c} f(x) \ dx + \int_{c}^{\infty} f(x) \ dx, \qquad \text{where } c \in \mathbb{R}$$

<u>REMARK:</u> The **improper integral converges** if the corresponding **limit exists and is finite**. Otherwise, it **diverges**.

WARNING: In general,
$$\int_{-\infty}^{\infty} f(x) dx \neq \lim_{L \to \infty} \int_{-L}^{L} f(x) dx$$

Improper Integrals (Break Discontinuities)

Proposition

Let $f \in C[a,b)$ s.t. f has a **break discontinuity** at x=b. Then

$$\int_a^b f(x) \ dx := \lim_{B \to b^-} \int_a^B f(x) \ dx$$

Proposition

Let $f \in C(a,b]$ s.t. f has a **break discontinuity** at x=a. Then

$$\int_a^b f(x) \ dx := \lim_{A \to a^+} \int_A^b f(x) \ dx$$

Proposition

Let $f \in C[a,b]$ s.t. f has a **break discontinuity** at $x = c \in (a,b)$. Then

$$\int_a^b f(x) \ dx = \int_a^c f(x) \ dx + \int_b^b f(x) \ dx$$

Special Limits involving Infinity

$$\lim_{x \to \infty} x^n \qquad = \lim_{x \to \infty} \sqrt[n]{x} \qquad = \qquad \infty \qquad (n \in \mathbb{N})$$

$$\lim_{x \to \infty} \frac{1}{x^n} = \lim_{x \to \infty} \frac{1}{\sqrt[n]{x}} = 0 \qquad (n \in \mathbb{N})$$

$$\lim_{x \to \infty} \ln x = \lim_{x \to \infty} \log x = \lim_{x \to \infty} \log_2 x = \infty$$

$$\lim_{x \to 0^+} \ln x \qquad = \lim_{x \to 0^+} \log x \quad = \lim_{x \to 0^+} \log_2 x \quad = \quad -\infty$$

$$\lim_{x \to \infty} e^x = \lim_{x \to \infty} 10^x = \lim_{x \to \infty} 2^x = \infty$$

$$\lim_{x \to -\infty} e^x = \lim_{x \to -\infty} 10^x = \lim_{x \to -\infty} 2^x = 0$$

$$\lim_{x \to \infty} \arctan x = \pi/2$$

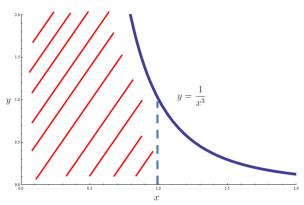
$$\lim_{x \to -\infty} \arctan x = -\pi/2$$

Improper Integrals (Example)

WORKED EXAMPLE: Evaluate $I = \int_0^1 \frac{1}{x^3} dx$.

$$I = \lim_{A \to 0^+} \int_A^1 x^{-3} \ dx = \lim_{A \to 0^+} \left[-\frac{1}{2x^2} \right]_{x=A}^{x=1} \stackrel{FTC}{=} \lim_{A \to 0^+} \left[-\frac{1}{2} + \frac{1}{2A^2} \right] = -\frac{1}{2} + \infty = \boxed{\infty}$$

... The region below in red is **unbounded** and **infinite**:

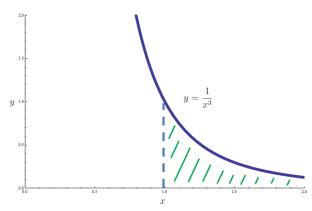


Improper Integrals (Example)

WORKED EXAMPLE: Evaluate
$$I = \int_{1}^{\infty} \frac{1}{x^3} dx$$
.

$$I = \lim_{B \to \infty} \int_{1}^{B} x^{-3} dx = \lim_{B \to \infty} \left[-\frac{1}{2x^{2}} \right]_{x=1}^{x=B} \stackrel{FTC}{=} \lim_{B \to \infty} \left[\frac{1}{2} - \frac{1}{2B^{2}} \right] = \frac{1}{2} - 0 = \boxed{\frac{1}{2}}$$

:. The region below in green is **unbounded** yet **finite**:



Improper Integrals (Example)

WORKED EXAMPLE: Compute
$$I = \int_{e^2}^{\infty} \frac{1}{x \ln x} dx$$
.

$$I = \lim_{B \to \infty} \int_{e^2}^{B} \frac{1}{x \ln x} \, dx$$

CV: Let
$$u = \ln x$$
. Then $du = \frac{1}{x} dx$ and $u(B) = \ln B$, $u\left(e^2\right) = \ln\left(e^2\right) = 2$

$$\stackrel{CV}{=} \lim_{B \to \infty} \int_{2}^{\ln B} \frac{1}{u} du = \lim_{B \to \infty} \left[\ln |u| \right]_{u=2}^{u=\ln B}$$

$$\stackrel{FTC}{=} \lim_{B \to \infty} \left[\ln(\ln B) - \ln 2 \right] = \infty - \ln 2 = \infty$$
 (i.e. the integral **diverges**)

Why is
$$\lim_{B\to\infty} \ln(\ln B) = \infty$$
??

CV: Let
$$B^* = \ln B$$
. Then, $B \to \infty \implies \ln B \to \infty \implies B^* \to \infty$

$$\therefore \lim_{B\to\infty} \ln(\ln B) \stackrel{CV}{=} \lim_{B^*\to\infty} \ln B^* = \infty$$

Special Functions

Some **special functions** are defined by improper integrals:

- Gamma Function: $\Gamma(\alpha) := \int_0^\infty x^{\alpha-1} e^{-x} \ dx$, where $\alpha > 0$
- Complementary Error Function: $\operatorname{erfc}(x) := \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} dt$
- Airy Function (of the 1st kind): $\operatorname{Ai}(x) := \frac{1}{\pi} \int_0^\infty \cos\left(\frac{t^3}{3} + xt\right) dt$
- Airy Function (of the 2nd kind):

$$\mathsf{Bi}(x) := \frac{1}{\pi} \int_0^\infty \left[\exp\left(-\frac{t^3}{3} + xt\right) + \sin\left(\frac{t^3}{3} + xt\right) \right] dt$$

Special functions are "special" in the sense that they tend to show up often in certain branches of mathematics, statistics, physics, and engineering.

IMPORTANT: DO NOT MEMORIZE THESE SPECIAL FUNCTIONS!

Josh Engwer (TTU) Improper Integrals 10 March 2014

Integral Transforms

Improper integrals show up in **integral transforms**:

- Laplace Transform: $F(s) = \mathcal{L}\left\{f(t)\right\} := \int_0^\infty e^{-st} f(t) \ dt$
- ullet Fourier Transform: $\widehat{f}(\omega)=\mathcal{F}\left\{f(t)
 ight\}:=\int_{-\infty}^{\infty}f(t)e^{-i\omega t}\;dt$

Real Number \rightarrow Function \rightarrow Real Number

Function of $x \to \boxed{\mathsf{Function}} \to \mathsf{Function}$ of x

Function of $t \to \boxed{\text{Laplace Transform}} \to \text{Function of } s$

Function of time $t \to$ Fourier Transform \to Function of frequency ω

Integral transforms are instrumental for certain differential equations.

IMPORTANT: Integral transforms are beyond the scope of this course.

Fin.