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Sequences (Definition)
Z ≡ set of integers R ≡ set of real numbers N := {1, 2, 3, 4, · · · }

So far in Calculus, a function f (x) had its domain & range as follows:

Dom(f ) ⊂ R & Rng(f ) ⊂ R

What if the domain of a function is restricted to integers?

Definition
A sequence {an}, is a function s.t. Dom(an) ⊂ Z & Rng(an) ⊂ R.

NOTATION: Sequence is denoted {an}∞n=1 or {an} or (a1, a2, a3, a4, a5, · · · ).

n ∈ N is called the index of the sequence (the label of which doesn’t matter).

WORKED EXAMPLE:
{

1
n2

}
=

(
1
12 ,

1
22 ,

1
32 ,

1
42 , · · ·

)
=

(
1,

1
4
,

1
9
,

1
16

, · · ·
)

WORKED EXAMPLE:
{

n2 + 1
}∞

n=−1 = (2, 1, 2, 5, 10, 17, · · · )

WORKED EXAMPLE:
{

j2 + 1
}∞

j=−1 = (2, 1, 2, 5, 10, 17, · · · )
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Sequences (Plot)
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Limit of a Sequence (Definition)

Definition
A sequence {an} has the limit L, denoted lim

n→∞
an = L, if successive terms

approach L as n increases without bound.

If lim
n→∞

an = L, then the sequence converges to L.

If lim
n→∞

an =∞, then the sequence diverges to∞.

If lim
n→∞

an = −∞, then the sequence diverges to −∞.

If lim
n→∞

an = DNE, then the sequence diverges by oscillation.

DNE ≡ ”Does Not Exist”
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Convergent Sequence (Plot)
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Convergent Sequence (Plot)
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Convergent Sequence (Plot)
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Divergent Sequence (Plot)
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Divergent Sequence (Plot)
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Divergent Sequence (Plot)
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Generating Curves

Definition
Let {an} be a sequence.

Then function f is a generating curve for sequence {an} if

f ∈ C[1,∞) s.t. an = f (n) ∀n ∈ N

i.e. A generating curve contains every point of the sequence.
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Generating Curve Theorem (GCT)

Theorem
(Generating Curve Theorem)

Given sequence {an}∞n=1 and function f ∈ C[1,∞) s.t. an = f (n) ∀n ∈ N.

Then, lim
x→∞

f (x) = L =⇒ lim
n→∞

an = L.
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Generating Curve Theorem (GCT)

Theorem
(Generating Curve Theorem)

Given sequence {an}∞n=1 and function f ∈ C[1,∞) s.t. an = f (n) ∀n ∈ N.

Then, lim
x→∞

f (x) = L =⇒ lim
n→∞

an = L.

WARNING: The converse to the GCT is not true in general!

i.e. lim
n→∞

an = L 6=⇒ lim
x→∞

f (x) = L in general.

Here is a counterexample:

Let an = cos(2πn) and f (x) = cos(2πx).

Then lim
n→∞

an = 1, but lim
x→∞

f (x) = DNE

WARNING: The generating curve for sequence an = n! is the Gamma
Function f (x) = Γ(x + 1), which is far too complicated to work with!

The GCT works best when the sequence contains no trig fcn’s & no factorials.
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Generating Curve Theorem (GCT)

Theorem
(Generating Curve Theorem)

Given sequence {an}∞n=1 and function f ∈ C[1,∞) s.t. an = f (n) ∀n ∈ N.

Then, lim
x→∞

f (x) = L =⇒ lim
n→∞

an = L.

PROOF: Take Advanced Calculus.
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Limit of a Sequence (Properties)

Theorem
lim

n→∞
k = k (where k ∈ R)

lim
n→∞

kan = k lim
n→∞

an

lim
n→∞

(an ± bn) = lim
n→∞

an ± lim
n→∞

bn

lim
n→∞

anbn = lim
n→∞

an · lim
n→∞

bn

lim
n→∞

an

bn
=

lim
n→∞

an

lim
n→∞

bn
, provided lim

n→∞
bn 6= 0

lim
n→∞

ap
n =

[
lim

n→∞
an

]p
, provided p > 0 and an ≥ 0.
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Limit of a Sequence (Theorems)

Theorem
(Continous Function Theorem for Sequences)

Given sequence {an}∞n=1 s.t. lim
n→∞

an = L ∈ R and continuous function f (x).

Then, lim
n→∞

f (an) = f
(

lim
n→∞

an

)
= f (L).

Theorem
(Squeeze Theorem for Sequences)

Given {an}∞n=1, {bn}∞n=1, {cn}∞n=1 s.t. an ≤ bn ≤ cn ∀n ≥ N for some N.

Then, lim
n→∞

an = lim
n→∞

cn = L ∈ R =⇒ lim
n→∞

bn = L

Squeeze Theorem is useful when a sequence involves a factorial.
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Limit of a Sequence (Theorems)

Theorem
(Continous Function Theorem for Sequences)

Given sequence {an}∞n=1 s.t. lim
n→∞

an = L ∈ R and continuous function f (x).

Then, lim
n→∞

f (an) = f
(

lim
n→∞

an

)
= f (L).

PROOF: Take Advanced Calculus.

Theorem
(Squeeze Theorem for Sequences)

Given {an}∞n=1, {bn}∞n=1, {cn}∞n=1 s.t. an ≤ bn ≤ cn ∀n ≥ N for some N.

Then, lim
n→∞

an = lim
n→∞

cn = L ∈ R =⇒ lim
n→∞

bn = L

PROOF: Take Advanced Calculus.
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Monotonicity & Boundedness of Sequences

Definition
Sequence {an} is increasing if a1 ≤ a2 ≤ a3 ≤ a4 ≤ · · ·
Sequence {an} is decreasing if a1 ≥ a2 ≥ a3 ≥ a4 ≥ · · ·
Sequence {an} is monotone if it’s either increasing or decreasing.

Sequence {an} is bounded above if ∃M ∈ R s.t. an ≤ M ∀n ∈ N
Sequence {an} is bounded below if ∃m ∈ R s.t. an ≥ m ∀n ∈ N
Sequence {an} is bounded if it’s both bounded above & bounded below.

Definition
Sequence {an} is eventually increasing if ∃N ∈ N s.t.
aN ≤ aN+1 ≤ aN+2 ≤ aN+3 ≤ · · ·
Sequence {an} is eventually decreasing if ∃N ∈ N s.t.
aN ≥ aN+1 ≥ aN+2 ≥ aN+3 ≥ · · ·
Sequence {an} is eventually monotone if it’s either eventually increasing or
eventually decreasing.
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Monotonicity & Boundedness of Sequences (Plots)
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Monotonicity & Boundedness of Sequences (Plots)
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Monotonicity & Boundedness of Sequences (Plots)
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Monotonicity & Boundedness of Sequences (Plots)
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Monotonicity & Boundedness of Sequences (Plots)
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Monotonicity & Boundedness of Sequences (Plots)
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Bounded Monotone Convergence Theorem (BMCT)

Theorem
(Bounded Monotone Convergence Theorem)

Every bounded eventually monotone sequence converges.

Josh Engwer (TTU) Sequences 24 March 2014 26 / 33



Bounded Monotone Convergence Theorem (BMCT)

Theorem
(Bounded Monotone Convergence Theorem)

Every bounded eventually monotone sequence converges.

PROOF: Take Advanced Calculus.
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Corollary to the BMCT
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Corollary to the BMCT
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Limit of a Geometric Sequence

Definition
A geometric sequence has the form {arn}, where a 6= 0 and r ∈ R

Examples of geometric sequences:

{5n} = (5, 25, 125, 625, 3125, 15625, · · · ){
3
2n

}
=

(
3
2
,

3
4
,

3
8
,

3
16

,
3

32
, · · ·

)
{
(−1)n

√
5
}
=

(
−
√

5,
√

5,−
√

5,
√

5, · · ·
)

{(−π)n} =
(
−π, π2,−π3, π4,−π5, π6, · · ·

)
Theorem
(i) |r| < 1 =⇒ lim

n→∞
rn = 0 (ii) r = 1 =⇒ lim

n→∞
rn = 1

(iii) r > 1 =⇒ lim
n→∞

rn =∞ (iv) r ≤ −1 =⇒ lim
n→∞

rn = DNE
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Limit of a Geometric Sequence

Theorem
(i) |r| < 1 =⇒ lim

n→∞
rn = 0 (ii) r = 1 =⇒ lim

n→∞
rn = 1

(iii) r > 1 =⇒ lim
n→∞

rn =∞ (iv) r ≤ −1 =⇒ lim
n→∞

rn = DNE

PROOF:
(i) CASE I: r = 0. Then, lim

n→∞
rn = lim

n→∞
(0)n = lim

n→∞
0 = 0

CASE II: 0 < r < 1.

Then, r > 0 =⇒ rn > 0 ∀n ∈ N =⇒ {rn} is bounded below by zero.
Moreover, r < 1 =⇒ rn+1 = rnr < rn ∀n ∈ N =⇒ {rn} is decreasing.
Therefore, sequence {rn} is bounded below & decreasing.
=⇒ sequence {rn} converges by the BMCT =⇒ lim

n→∞
rn = L

BWOC, assume L > 0. Then, lim
n→∞

rn+1 = rL < L (since r < 1)

But, lim
n→∞

rn+1 = lim
n→∞

rn = L =⇒ L < L← CONTRADICTION!
Therefore, L = 0 =⇒ lim

n→∞
rn = 0

CASE III: −1 < r < 0. Then, apply CASE II to the sequence {|r|n}.
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Limit of a Geometric Sequence

Theorem
(i) |r| < 1 =⇒ lim

n→∞
rn = 0 (ii) r = 1 =⇒ lim

n→∞
rn = 1

(iii) r > 1 =⇒ lim
n→∞

rn =∞ (iv) r ≤ −1 =⇒ lim
n→∞

rn = DNE

PROOF:
(ii) Let r = 1. Then, lim

n→∞
rn = lim

n→∞
(1)n = lim

n→∞
1 = 1

(iii) Let r > 1. Then, rn+1 = rnr > rn =⇒ {rn} is increasing.

Moreover, {rn} is unbounded:
BWOC, assume {rn} is bounded.
Then, by defn, rn ≤ M ∀n ∈ N for some constant M > 0.
But rn = M =⇒ n = log M

log r , and since {rn} is increasing,
for n > log M

log r , rn > M ← CONTRADICTION!
Therefore, {rn} is increasing & unbounded =⇒ lim

n→∞
rn =∞

(iv) Let r ≤ −1. Then, {rn} diverges by oscillation =⇒ lim
n→∞

rn = DNE

QED
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Fin

Fin.
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