Sequences Calculus II

Josh Engwer

TTU

24 March 2014

Josh Engwer (TTU)

Sequences (Definition)

 $\mathbb{Z} \equiv \text{ set of integers}$ $\mathbb{R} \equiv \text{ set of real numbers}$ $\mathbb{N} := \{1, 2, 3, 4, \cdots \}$

So far in Calculus, a **function** f(x) had its domain & range as follows:

 $\mathsf{Dom}(f) \subset \mathbb{R} \& \mathsf{Rng}(f) \subset \mathbb{R}$

What if the domain of a function is restricted to integers?

Definition

A sequence $\{a_n\}$, is a function s.t. $Dom(a_n) \subset \mathbb{Z} \& Rng(a_n) \subset \mathbb{R}$.

<u>NOTATION</u>: Sequence is denoted $\{a_n\}_{n=1}^{\infty}$ or $\{a_n\}$ or $(a_1, a_2, a_3, a_4, a_5, \cdots)$.

 $n \in \mathbb{N}$ is called the **index** of the sequence (the label of which doesn't matter).

WORKED EXAMPLE:
$$\left\{\frac{1}{n^2}\right\} = \left(\frac{1}{1^2}, \frac{1}{2^2}, \frac{1}{3^2}, \frac{1}{4^2}, \cdots\right) = \left(1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \cdots\right)$$
WORKED EXAMPLE: $\left\{n^2 + 1\right\}_{n=-1}^{\infty} = (2, 1, 2, 5, 10, 17, \cdots)$ WORKED EXAMPLE: $\left\{j^2 + 1\right\}_{j=-1}^{\infty} = (2, 1, 2, 5, 10, 17, \cdots)$

Josh Engwer (TTU)

Sequences (Plot)

Definition

A sequence $\{a_n\}$ has the **limit** *L*, denoted $\lim_{n\to\infty} a_n = L$, if successive terms approach *L* as *n* increases without bound.

- If $\lim_{n\to\infty} a_n = L$, then the sequence **converges** to *L*.
- If $\lim_{n\to\infty} a_n = \infty$, then the sequence **diverges** to ∞ .
- If $\lim_{n\to\infty} a_n = -\infty$, then the sequence **diverges** to $-\infty$.
- If $\lim_{n\to\infty} a_n = \mathsf{DNE}$, then the sequence **diverges by oscillation**.

$DNE \equiv "Does Not Exist"$

Convergent Sequence (Plot)

Convergent Sequence (Plot)

Convergent Sequence (Plot)

Divergent Sequence (Plot)

Divergence to ∞

Divergent Sequence (Plot)

Divergent Sequence (Plot)

Divergence by Oscillation

Generating Curves

Definition

Let $\{a_n\}$ be a sequence.

Then function f is a **generating curve** for sequence $\{a_n\}$ if

$$f \in C[1,\infty)$$
 s.t. $a_n = f(n) \ \forall n \in \mathbb{N}$

i.e. A generating curve contains every point of the sequence.

Generating Curve Theorem (GCT)

Theorem

(Generating Curve Theorem)

Given sequence $\{a_n\}_{n=1}^{\infty}$ and function $f \in C[1,\infty)$ s.t. $a_n = f(n) \quad \forall n \in \mathbb{N}$.

Then, $\lim_{x\to\infty} f(x) = L \implies \lim_{n\to\infty} a_n = L.$

Generating Curve Theorem (GCT)

Theorem

(Generating Curve Theorem)

Given sequence $\{a_n\}_{n=1}^{\infty}$ and function $f \in C[1,\infty)$ s.t. $a_n = f(n) \quad \forall n \in \mathbb{N}$.

Then, $\lim_{x\to\infty} f(x) = L \implies \lim_{n\to\infty} a_n = L.$

WARNING: The converse to the GCT is not true in general!

i.e.
$$\lim_{n \to \infty} a_n = L \implies \lim_{x \to \infty} f(x) = L$$
 in general.

Here is a counterexample:

Let
$$a_n = \cos(2\pi n)$$
 and $f(x) = \cos(2\pi x)$.

Then
$$\lim_{n \to \infty} a_n = 1$$
, but $\lim_{x \to \infty} f(x) =$ DNE

<u>WARNING</u>: The generating curve for sequence $a_n = n!$ is the **Gamma Function** $f(x) = \Gamma(x+1)$, which is far too complicated to work with!

The GCT works best when the sequence contains no trig fcn's & no factorials.

(Generating Curve Theorem)

Given sequence $\{a_n\}_{n=1}^{\infty}$ and function $f \in C[1,\infty)$ s.t. $a_n = f(n) \quad \forall n \in \mathbb{N}$.

Then, $\lim_{x\to\infty} f(x) = L \implies \lim_{n\to\infty} a_n = L.$

PROOF: Take Advanced Calculus.

٩	$\lim_{n\to\infty}k=k$	(where $k \in \mathbb{R}$)
٩	$\lim_{n\to\infty}ka_n=k\lim_{n\to\infty}ka_n=k$	$a_n = a_n$
٩	$\lim_{n\to\infty}(a_n\pm b_n)=$	$\lim_{n\to\infty}a_n\pm\lim_{n\to\infty}b_n$
٩	$\lim_{n\to\infty}a_nb_n=\lim_{n\to\infty}a_nb_n$	$\sum_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$
•	$\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{\lim_{n\to\infty}}{\lim_{n\to\infty}}$	$rac{a_n}{b_n}$, provided $\lim_{n o \infty} b_n eq 0$
٩	$\lim_{n\to\infty}a_n^p=\left[\lim_{n\to\infty}a_n^p\right]$	$a_n \Big]^p$, provided $p > 0$ and $a_n \ge 0$.

٩	$\lim_{n o \infty} k = k$ (where $k \in \mathbb{R}$)
٩	$\lim_{n \to \infty} k a_n = k \lim_{n \to \infty} a_n$
٩	$\lim_{n\to\infty} (a_n \pm b_n) = \lim_{n\to\infty} a_n \pm \lim_{n\to\infty} b_n$
٩	$\lim_{n\to\infty}a_nb_n=\lim_{n\to\infty}a_n\cdot\lim_{n\to\infty}b_n$
٩	$\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{\lim_{n\to\infty}a_n}{\lim_{n\to\infty}b_n}, \text{ provided }\lim_{n\to\infty}b_n\neq 0$
٩	$\lim_{n\to\infty} a_n^p = \left[\lim_{n\to\infty} a_n\right]^p$, provided $p > 0$ and $a_n \ge 0$.

PROOF: Take Advanced Calculus.

(Continous Function Theorem for Sequences)

Given sequence $\{a_n\}_{n=1}^{\infty}$ s.t. $\lim_{n \to \infty} a_n = L \in \mathbb{R}$ and continuous function f(x). Then, $\lim_{n \to \infty} f(a_n) = f\left(\lim_{n \to \infty} a_n\right) = f(L)$.

Theorem

(Squeeze Theorem for Sequences) Given $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$, $\{c_n\}_{n=1}^{\infty}$ s.t. $a_n \le b_n \le c_n \quad \forall n \ge N$ for some N. Then, $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L \in \mathbb{R} \implies \lim_{n\to\infty} b_n = L$

Squeeze Theorem is useful when a sequence involves a factorial.

(Continous Function Theorem for Sequences)

Given sequence $\{a_n\}_{n=1}^{\infty}$ s.t. $\lim_{n \to \infty} a_n = L \in \mathbb{R}$ and continuous function f(x). Then, $\lim_{n \to \infty} f(a_n) = f\left(\lim_{n \to \infty} a_n\right) = f(L)$.

PROOF: Take Advanced Calculus.

Theorem

(Squeeze Theorem for Sequences) Given $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$, $\{c_n\}_{n=1}^{\infty}$ s.t. $a_n \leq b_n \leq c_n \quad \forall n \geq N$ for some N. Then, $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L \in \mathbb{R} \implies \lim_{n \to \infty} b_n = L$

PROOF: Take Advanced Calculus.

Definition

Sequence $\{a_n\}$ is **increasing** if $a_1 \le a_2 \le a_3 \le a_4 \le \cdots$

Sequence $\{a_n\}$ is **decreasing** if $a_1 \ge a_2 \ge a_3 \ge a_4 \ge \cdots$

Sequence $\{a_n\}$ is **monotone** if it's either increasing or decreasing.

Sequence $\{a_n\}$ is **bounded above** if $\exists M \in \mathbb{R}$ s.t. $a_n \leq M \quad \forall n \in \mathbb{N}$

Sequence $\{a_n\}$ is **bounded below** if $\exists m \in \mathbb{R}$ s.t. $a_n \ge m \quad \forall n \in \mathbb{N}$

Sequence $\{a_n\}$ is **bounded** if it's both bounded above & bounded below.

Definition

Sequence $\{a_n\}$ is **eventually increasing** if $\exists N \in \mathbb{N}$ s.t. $a_N \leq a_{N+1} \leq a_{N+2} \leq a_{N+3} \leq \cdots$

Sequence $\{a_n\}$ is **eventually decreasing** if $\exists N \in \mathbb{N}$ s.t. $a_N \ge a_{N+1} \ge a_{N+2} \ge a_{N+3} \ge \cdots$

Sequence $\{a_n\}$ is **eventually monotone** if it's either eventually increasing or eventually decreasing.

Increasing Sequence

Decreasing Sequence

Neither Increasing Nor Decreasing

Eventually Increasing Sequence $a_3 \le a_4 \le a_5 \le a_6 \le a_7 \le \cdots$

Bounded Monotone Convergence Theorem (BMCT)

Theorem

(Bounded Monotone Convergence Theorem)

Every bounded eventually monotone sequence converges.

(Bounded Monotone Convergence Theorem)

Every bounded eventually monotone sequence converges.

PROOF: Take Advanced Calculus.

Corollary to the BMCT

Convergent Sequence Eventually Increasing Bounded Above

Corollary to the BMCT

Bounded Below

Limit of a Geometric Sequence

Definition

A geometric sequence has the form $\{ar^n\}$, where $a \neq 0$ and $r \in \mathbb{R}$

Examples of geometric sequences:

•
$$\{5^n\} = (5, 25, 125, 625, 3125, 15625, \cdots)$$

• $\left\{\frac{3}{2^n}\right\} = \left(\frac{3}{2}, \frac{3}{4}, \frac{3}{8}, \frac{3}{16}, \frac{3}{32}, \cdots\right)$
• $\left\{(-1)^n\sqrt{5}\right\} = \left(-\sqrt{5}, \sqrt{5}, -\sqrt{5}, \sqrt{5}, \cdots\right)$
• $\left\{(-\pi)^n\right\} = \left(-\pi, \pi^2, -\pi^3, \pi^4, -\pi^5, \pi^6, \cdots\right)$

Theorem

(i)
$$|r| < 1 \implies \lim_{n \to \infty} r^n = 0$$

$$(iii) r > 1 \implies \lim_{n \to \infty} r^n = \infty$$

(*ii*)
$$r = 1 \implies \lim_{n \to \infty} r^n = 1$$

$$(iv) \ r \le -1 \implies \lim_{n \to \infty} r^n = DNE$$

Limit of a Geometric Sequence

Theorem

$(i) r < 1 \implies \lim_{n \to \infty} r^n = 0$	(<i>ii</i>) $r = 1 \implies \lim_{n \to \infty} r^n = 1$
$(iii) r > 1 \implies \lim_{n \to \infty} r^n = \infty$	$(iv) \ r \le -1 \implies \lim_{n \to \infty} r^n = DNE$

PROOF:

(*i*) CASE I: r = 0. Then, $\lim_{n \to \infty} r^n = \lim_{n \to \infty} (0)^n = \lim_{n \to \infty} 0 = 0$

CASE II: 0 < r < 1.

Then, $r > 0 \implies r^n > 0 \quad \forall n \in \mathbb{N} \implies \{r^n\}$ is bounded below by zero. Moreover, $r < 1 \implies r^{n+1} = r^n r < r^n \quad \forall n \in \mathbb{N} \implies \{r^n\}$ is decreasing. Therefore, sequence $\{r^n\}$ is bounded below & decreasing. \implies sequence $\{r^n\}$ converges by the BMCT $\implies \lim_{n \to \infty} r^n = L$ BWOC, assume L > 0. Then, $\lim_{n \to \infty} r^{n+1} = rL < L$ (since r < 1) But, $\lim_{n \to \infty} r^{n+1} = \lim_{n \to \infty} r^n = L \implies L < L \leftarrow \text{CONTRADICTION!}$ Therefore, $L = 0 \implies \lim_{n \to \infty} r^n = 0$ CASE III: -1 < r < 0. Then, apply CASE II to the sequence $\{|r|^n\}$.

Limit of a Geometric Sequence

Theorem

$$\begin{array}{ll} (i) \ |r| < 1 \implies \lim_{n \to \infty} r^n = 0 \\ (ii) \ r = 1 \implies \lim_{n \to \infty} r^n = 1 \\ (iii) \ r > 1 \implies \lim_{n \to \infty} r^n = \infty \\ \end{array}$$

PROOF:

QED

(*ii*) Let
$$r = 1$$
. Then, $\lim_{n \to \infty} r^n = \lim_{n \to \infty} (1)^n = \lim_{n \to \infty} 1 = 1$

(*iii*) Let r > 1. Then, $r^{n+1} = r^n r > r^n \implies \{r^n\}$ is increasing.

Moreover, $\{r^n\}$ is unbounded: BWOC, assume $\{r^n\}$ is bounded. Then, by defn, $r^n \leq M \quad \forall n \in \mathbb{N}$ for some constant M > 0. But $r^n = M \implies n = \frac{\log M}{\log r}$, and since $\{r^n\}$ is increasing, for $n > \frac{\log M}{\log r}$, $r^n > M \leftarrow \text{CONTRADICTION!}$ Therefore, $\{r^n\}$ is increasing & unbounded $\implies \lim_{n \to \infty} r^n = \infty$

iv) Let
$$r \leq -1$$
. Then, $\{r^n\}$ diverges by oscillation $\implies \lim_{n \to \infty} r^n = DNE$

Fin.