Geometric Series & Telescoping Series Calculus II

Josh Engwer

TTU

26 March 2014

Finite Sum Rules

 $(M, N \in \mathbb{N})$

Constant Rule	$\sum_{k=1}^{N} c = Nc$
Constant Multiple Rule	$\sum_{k=1}^N ca_k = c \sum_{k=1}^N a_k$
Sum/Diff Rule	$\sum_{k=1}^{N} (a_k \pm b_k) = \sum_{k=1}^{N} a_k \pm \sum_{k=1}^{N} b_k$
Lump-Sum Rule	$1 < M < N \implies \sum_{k=1}^{M} a_k + \sum_{k=M+1}^{N} a_k = \sum_{k=1}^{N} a_k$
Sum of Integers	$\sum_{k=1}^{N} k = \frac{N(N+1)}{2}$
Sum of Squares	$\sum_{k=1}^{N} k^2 = \frac{N(N+1)(2N+1)}{6}$
Sum of Cubes	$\sum_{k=1}^{N} k^3 = \frac{N^2 (N+1)^2}{4}$

Definition

Let $\{a_n\}$ be a sequence. Then the *n*th **partial sum** is defined by $S_n := \sum a_k$

Definition

is a

An infinite series

$$\sum_{\substack{k=1\\closed\ form}}^{\infty} a_k = \underbrace{a_1 + a_2 + a_3 + a_4 + a_5 + \cdots}_{expansion} \qquad (k \text{ is the index})$$

a sequence of partial sums $\{S_n\}_{n=1}^{\infty}$ where $S_n := \sum_{k=1}^n a_k$

REMARK: Going forward, "Series" means "Infinite Series".

k=1

Infinite Series (Convergence)

Going forward, if the starting point of a series does not matter,

the series
$$\sum_{k=N}^{\infty} a_k$$
 will be denoted as $\sum a_k$.

Definition

Series $\sum a_k$ converges \iff Sequence of Partial Sums $\{S_n\}$ converges. Series $\sum a_k$ diverges \iff Sequence of Partial Sums $\{S_n\}$ diverges.

Using this definition to test a series for convergence is often too tedious. Many useful convergence tests will be developed throughout this chapter.

Definition

Let series $\sum a_k$ converge with partial sum sequence $\{S_n\}$. Then its **sum** is $\sum a_k = \lim S_n$

(Series Linearity Theorem)

(i) Series $\sum a_k$ and $\sum b_k$ both converge $\implies \sum (a_k + b_k)$ converges.

(*ii*) Series $\sum a_k$ and $\sum b_k$ both converge $\implies \sum (a_k - b_k)$ converges.

(*iii*) Series $\sum a_k$ converges $\implies \sum ca_k$ converges, where $c \in \mathbb{R}$.

(i) Series $\sum a_k$ and $\sum b_k$ both converge $\implies \sum (a_k + b_k)$ converges.

(ii) Series $\sum a_k$ and $\sum b_k$ both converge $\implies \sum (a_k - b_k)$ converges.

(*iii*) Series $\sum a_k$ converges $\implies \sum ca_k$ converges, where $c \in \mathbb{R}$.

PROOF:

Let series $\sum a_k$, $\sum b_k$ both converge.

Let $\{A_n\}, \{B_n\}$ be the sequences of partial sums for $\sum a_k, \sum b_k$ respectively. Then $\{A_n\}, \{B_n\}$ converge to finite values L_A, L_B respectively.

$$\implies \lim_{n \to \infty} A_n = L_A, \qquad \lim_{n \to \infty} B_n = L_B$$

- $\implies \lim_{n \to \infty} (A_n + B_n) = L_A + L_B, \quad \lim_{n \to \infty} (A_n B_n) = L_A L_B, \quad \lim_{n \to \infty} cA_n = cL_A$
- $\implies L_A + L_B, \quad L_A L_B, \quad cL_A \text{ are all finite values.}$
- \implies { $A_n + B_n$ }, { $A_n B_n$ }, { cA_n } are all convergent sequences.
- $\implies \sum (a_k + b_k), \sum (a_k b_k), \sum ca_k$ are all convergent series.

(Divergent Sum Theorem)

 $\sum a_k$ converges and $\sum b_k$ diverges $\implies \sum (a_k + b_k)$ diverges.

Infinite Series (Linearity & Divergence)

Theorem

(Divergent Sum Theorem)

 $\sum a_k$ converges and $\sum b_k$ diverges $\implies \sum (a_k + b_k)$ diverges.

PROOF:

Let $\sum a_k$ converge and $\sum b_k$ diverge.

BWOC, assume $\sum (a_k + b_k)$ converges.

Then, by the Series Linearity Theorem, $\sum [(a_k + b_k) - a_k]$ converges.

```
\implies \sum b_k converges \leftarrow CONTRADICTION!
```

Therefore, $\sum (a_k + b_k)$ must diverge. QED

$\mathsf{BWOC} \equiv "\mathbf{B} \mathsf{y} \; \mathbf{W} \mathsf{a} \mathsf{y} \; \mathbf{O} \mathsf{f} \; \mathbf{C} \mathsf{ontradiction"}$

(Divergent Difference Theorem)

 $\sum a_k$ converges and $\sum b_k$ diverges $\implies \sum (a_k - b_k)$ diverges.

Infinite Series (Linearity & Divergence)

Theorem

(Divergent Difference Theorem)

 $\sum a_k$ converges and $\sum b_k$ diverges $\implies \sum (a_k - b_k)$ diverges.

PROOF:

Let $\sum a_k$ converge and $\sum b_k$ diverge.

BWOC, assume $\sum (a_k - b_k)$ converges.

Then, by the Series Linearity Theorem, $\sum [a_k - (a_k - b_k)]$ converges.

 $\implies \sum b_k$ converges \leftarrow CONTRADICTION!

Therefore, $\sum (a_k - b_k)$ must diverge. QED

BWOC \equiv "By Way Of Contradiction"

(Divergent Multiple Theorem)

 $\sum a_k$ diverges $\implies \sum ca_k$ diverges, where $c \neq 0$

Infinite Series (Linearity & Divergence)

Theorem

(Divergent Multiple Theorem)

 $\sum a_k$ diverges $\implies \sum ca_k$ diverges, where $c \neq 0$

PROOF:

```
Let \sum a_k diverge and c \neq 0.
```

BWOC, assume $\sum ca_k$ converges.

Then, by the Series Linearity Theorem, $\sum \left[\frac{1}{c}(ca_k)\right]$ converges.

```
\implies \sum a_k \text{ converges} \leftarrow \text{CONTRADICTION!}
```

Therefore, $\sum ca_k$ must diverge.

QED

BWOC \equiv "By Way Of Contradiction"

Arithmetic Series

Definition

An **arithmetic series** has the form $\sum (ak + b)$

Examples of arithmetic series:

$$\sum_{k=1}^{\infty} k = 1 + 2 + 3 + 4 + 5 + \cdots$$
$$\sum_{k=1}^{\infty} 2k = 2 + 4 + 6 + 8 + 10 + \cdots$$
$$\sum_{k=-1}^{\infty} (1-k) = 2 + 1 + 0 - 1 - 2 - \cdots$$

Theorem

(Arithmetic Series Theorem)

The arithmetic series
$$\sum_{k=1}^{\infty} (ak+b)$$
 converges $\iff a=b=0$

Josh Engwer (TTU)

٠

Arithmetic Series

Theorem

The arithmetic series
$$\sum_{k=1}^{\infty} (ak+b)$$
 converges $\iff a=b=0$

PROOF:

$$\begin{array}{l} (\Leftarrow) \ \, \text{Suppose } a=b=0. \quad \text{Then,} \\ & \displaystyle\sum_{k=1}^{\infty}(ak+b)=\displaystyle\sum_{k=1}^{\infty}0=0+0+0+0+\dots=0 \implies \displaystyle\sum_{k=1}^{\infty}(ak+b) \ \text{converges.} \\ (\Rightarrow) \ \, \text{Suppose } \displaystyle\sum_{k=1}^{\infty}(ak+b) \ \text{converges.} \\ & \text{Then, the partial sum sequence } \{S_n\} \ \text{converges, where} \\ & \displaystyle S_n=\displaystyle\sum_{k=1}^{n}(ak+b)=a\displaystyle\sum_{k=1}^{n}k+\displaystyle\sum_{k=1}^{n}b=\frac{an(n+1)}{2}+nb \qquad (\text{Finite Sum Rules}) \\ & \text{But } \displaystyle\lim_{n\to\infty}n=\displaystyle\lim_{n\to\infty}\frac{n(n+1)}{2}=\infty, \ \text{so } \{S_n\} \ \text{converges only if } a=b=0. \\ & \text{QED} \end{array}$$

Geometric Series

Definition

A geometric series has the form $\sum ar^k$, where $a \neq 0$ and $r \in \mathbb{R}$.

Examples of geometric series:

$$\sum_{k=0}^{\infty} 2^k = 1 + 2 + 4 + 8 + 16 + \cdots$$
$$\sum_{k=0}^{\infty} (-2)^k = 1 - 2 + 4 - 8 + 16 - \cdots$$
$$\sum_{k=1}^{\infty} \left(\frac{1}{2}\right)^k = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \cdots$$

Theorem

(Geometric Series Theorem)

$$|r| < 1 \implies$$
 geometric series $\sum_{k=0}^{\infty} ar^k$ converges and $\sum_{k=0}^{\infty} ar^k = \frac{a}{1-r}$

Geometric Series

Theorem

(Geometric Series Theorem)

$$|r| < 1 \implies$$
 geometric series $\sum_{k=0}^{\infty} ar^k$ converges and $\sum_{k=0}^{\infty} ar^k = \frac{a}{1-r}$ $(a \neq 0)$

PROOF: $S_n = a + ar + ar^2 + \dots + ar^{n-1} \implies rS_n = ar + ar^2 + ar^3 + \dots + ar^n$ \implies $S_n - rS_n = (a + ar + ar^2 + \dots + ar^{n-1}) - (ar + ar^2 + ar^3 + \dots + ar^n)$ $\implies (1-r)S_n = a - ar^n \implies S_n = \frac{a(1-r^n)}{1-r}, \text{ where } r \neq 1$ $|r| < 1 \implies \lim_{n \to \infty} r^n = 0 \implies \lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{a(1-r^n)}{1-r} = \frac{a(1-0)}{1-r} = \frac{a}{1-r}$ $|r| > 1 \implies \lim_{n \to \infty} |r^n| = \infty \implies \lim_{n \to \infty} |S_n| = \infty \implies \sum ar^k$ diverges. $r = -1 \implies \sum ar^k = \sum a(-1)^k$ which diverges QED

Reindexing a Series

Recall the sum of a convergent geometric series:

$$\sum_{k=0}^{\infty} ar^k = \frac{a}{1-r}$$

QUESTION:

What if the index of a convergent geometric series does not start at zero??

ANSWER: Reindex the series:

$$\sum_{k=-5}^{\infty} \left(\frac{1}{2}\right)^{k} = \left(\frac{1}{2}\right)^{-5} + \left(\frac{1}{2}\right)^{-4} + \left(\frac{1}{2}\right)^{-3} + \left(\frac{1}{2}\right)^{-2} + \left(\frac{1}{2}\right)^{-1} + \sum_{k=0}^{\infty} \left(\frac{1}{2}\right)^{k}$$
$$\sum_{k=3}^{\infty} \left(\frac{5}{7}\right)^{k} = -\left(\frac{5}{7}\right)^{0} - \left(\frac{5}{7}\right)^{1} - \left(\frac{5}{7}\right)^{2} + \sum_{k=0}^{\infty} \left(\frac{5}{7}\right)^{k}$$

<u>REMARK:</u> Reindexing is used in solving certain differential equations.

Definition

A telescoping series has internal cancellation of terms in its partial sums.

Basic Forms of Telescoping Series (*f* is a function):

- $\sum [f(k+1) f(k)]$
- $\sum [f(k) f(k+1)]$
- $\sum [f(k) f(k-1)]$
- $\sum [f(k-1) f(k)]$

Telescoping Series Toolkit:

- Partial Fraction Decomposition (PFD)
- Properties of Logarithms
- Rationalizing Numerator
- Trig Identities

Given telescoping series
$$\sum_{k=1}^{\infty} \left[f(k+1) - f(k) \right], \text{ then its } n^{th} \text{ partial sum is}$$

$$S_n = f(2) - f(1) + f(3) - f(2) + f(4) - f(3) + \dots + f(n) - f(n-1) + f(n+1) - f(n)$$

$$\implies S_n = f(n+1) - f(1)$$

$$\implies \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left[f(n+1) - f(1) \right] = \lim_{n \to \infty} \left[f(n+1) \right] - f(1)$$
Now, if sequence $\{S_n\}$ converges, then series
$$\sum_{k=1}^{\infty} \left[f(k+1) - f(k) \right] = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left[f(n+1) \right] - f(1)$$

Fin.