Geometric Series \& Telescoping Series

Calculus II

Josh Engwer

TTU
26 March 2014

Finite Sum Rules
 $(M, N \in \mathbb{N})$

Constant Rule	$\sum_{k=1}^{N} c=N c$
Constant Multiple Rule	$\sum_{k=1}^{N} c a_{k}=c \sum_{k=1}^{N} a_{k}$
Sum/Diff Rule	$\sum_{k=1}^{N}\left(a_{k} \pm b_{k}\right)=\sum_{k=1}^{N} a_{k} \pm \sum_{k=1}^{N} b_{k}$
Lump-Sum Rule	$1<M<N \Longrightarrow \sum_{k=1}^{M} a_{k}+\sum_{k=M+1}^{N} a_{k}=\sum_{k=1}^{N} a_{k}$
Sum of Integers	$\sum_{k=1}^{N} k=\frac{N(N+1)}{2}$
Sum of Squares	$\sum_{k=1}^{N} k^{2}=\frac{N(N+1)(2 N+1)}{6}$
Sum of Cubes	$\sum_{k=1}^{N} k^{3}=\frac{N^{2}(N+1)^{2}}{4}$

Infinite Series (Definition)

Definition

Let $\left\{a_{n}\right\}$ be a sequence. Then the $n^{\text {th }}$ partial sum is defined by $S_{n}:=\sum_{k=1}^{n} a_{k}$

Definition

An infinite series

$$
\underbrace{\sum_{k=1}^{\infty} a_{k}}_{\text {expansion }}=\underbrace{a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+\cdots} \quad(k \text { is the index })
$$

is a sequence of partial sums $\left\{S_{n}\right\}_{n=1}^{\infty}$ where $S_{n}:=\sum_{k=1}^{n} a_{k}$
REMARK: Going forward, "Series" means "Infinite Series".

Infinite Series (Convergence)

Going forward, if the starting point of a series does not matter,

$$
\text { the series } \sum_{k=N}^{\infty} a_{k} \text { will be denoted as } \sum a_{k} \text {. }
$$

Definition

Series $\sum a_{k}$ converges \Longleftrightarrow Sequence of Partial Sums $\left\{S_{n}\right\}$ converges. Series $\sum a_{k}$ diverges \Longleftrightarrow Sequence of Partial Sums $\left\{S_{n}\right\}$ diverges.

Using this definition to test a series for convergence is often too tedious. Many useful convergence tests will be developed throughout this chapter.

Definition

Let series $\sum a_{k}$ converge with partial sum sequence $\left\{S_{n}\right\}$.
Then its sum is $\sum a_{k}=\lim _{n \rightarrow \infty} S_{n}$

Infinite Series (Linearity)

Theorem

(Series Linearity Theorem)
(i) Series $\sum a_{k}$ and $\sum b_{k}$ both converge $\Longrightarrow \sum\left(a_{k}+b_{k}\right)$ converges.
(ii) Series $\sum a_{k}$ and $\sum b_{k}$ both converge $\Longrightarrow \sum\left(a_{k}-b_{k}\right)$ converges.
(iii) Series $\sum a_{k}$ converges $\Longrightarrow \sum c a_{k}$ converges, where $c \in \mathbb{R}$.

Infinite Series (Linearity)

Theorem

(i) Series $\sum a_{k}$ and $\sum b_{k}$ both converge $\Longrightarrow \sum\left(a_{k}+b_{k}\right)$ converges.
(ii) Series $\sum a_{k}$ and $\sum b_{k}$ both converge $\Longrightarrow \sum\left(a_{k}-b_{k}\right)$ converges.
(iii) Series $\sum a_{k}$ converges $\Longrightarrow \sum c a_{k}$ converges, where $c \in \mathbb{R}$.

PROOF:

Let series $\sum a_{k}, \sum b_{k}$ both converge.
Let $\left\{A_{n}\right\},\left\{B_{n}\right\}$ be the sequences of partial sums for $\sum a_{k}, \sum b_{k}$ respectively. Then $\left\{A_{n}\right\},\left\{B_{n}\right\}$ converge to finite values L_{A}, L_{B} respectively.
$\Longrightarrow \lim _{n \rightarrow \infty} A_{n}=L_{A}, \quad \lim _{n \rightarrow \infty} B_{n}=L_{B}$
$\Longrightarrow \lim _{n \rightarrow \infty}\left(A_{n}+B_{n}\right)=L_{A}+L_{B}, \quad \lim _{n \rightarrow \infty}\left(A_{n}-B_{n}\right)=L_{A}-L_{B}, \lim _{n \rightarrow \infty} c A_{n}=c L_{A}$
$\Longrightarrow L_{A}+L_{B}, \quad L_{A}-L_{B}, \quad c L_{A}$ are all finite values.
$\Longrightarrow\left\{A_{n}+B_{n}\right\},\left\{A_{n}-B_{n}\right\},\left\{c A_{n}\right\}$ are all convergent sequences.
$\Longrightarrow \sum\left(a_{k}+b_{k}\right), \sum\left(a_{k}-b_{k}\right), \sum c a_{k}$ are all convergent series.
QED

Infinite Series (Linearity \& Divergence)

Theorem

(Divergent Sum Theorem)
$\sum a_{k}$ converges and $\sum b_{k}$ diverges $\Longrightarrow \sum\left(a_{k}+b_{k}\right)$ diverges.

Infinite Series (Linearity \& Divergence)

Theorem

(Divergent Sum Theorem)
$\sum a_{k}$ converges and $\sum b_{k}$ diverges $\Longrightarrow \sum\left(a_{k}+b_{k}\right)$ diverges.
PROOF:
Let $\sum a_{k}$ converge and $\sum b_{k}$ diverge.
BWOC, assume $\sum\left(a_{k}+b_{k}\right)$ converges.
Then, by the Series Linearity Theorem, $\sum\left[\left(a_{k}+b_{k}\right)-a_{k}\right]$ converges.
$\Longrightarrow \sum b_{k}$ converges \leftarrow CONTRADICTION!
Therefore, $\sum\left(a_{k}+b_{k}\right)$ must diverge.
QED

BWOC \equiv "By Way Of Contradiction"

Infinite Series (Linearity \& Divergence)

Theorem

(Divergent Difference Theorem)
$\sum a_{k}$ converges and $\sum b_{k}$ diverges $\Longrightarrow \sum\left(a_{k}-b_{k}\right)$ diverges.

Infinite Series (Linearity \& Divergence)

Theorem

(Divergent Difference Theorem)
$\sum a_{k}$ converges and $\sum b_{k}$ diverges $\Longrightarrow \sum\left(a_{k}-b_{k}\right)$ diverges.
PROOF:
Let $\sum a_{k}$ converge and $\sum b_{k}$ diverge.
BWOC, assume $\sum\left(a_{k}-b_{k}\right)$ converges.
Then, by the Series Linearity Theorem, $\sum\left[a_{k}-\left(a_{k}-b_{k}\right)\right]$ converges.
$\Longrightarrow \sum b_{k}$ converges \leftarrow CONTRADICTION!
Therefore, $\sum\left(a_{k}-b_{k}\right)$ must diverge.
QED

BWOC \equiv "By Way Of Contradiction"

Infinite Series (Linearity \& Divergence)

Theorem
(Divergent Multiple Theorem)
$\sum a_{k}$ diverges $\Longrightarrow \sum c a_{k}$ diverges, where $c \neq 0$

Infinite Series (Linearity \& Divergence)

Theorem

(Divergent Multiple Theorem)
$\sum a_{k}$ diverges $\Longrightarrow \sum c a_{k}$ diverges, where $c \neq 0$
PROOF:
Let $\sum a_{k}$ diverge and $c \neq 0$.
BWOC, assume $\sum c a_{k}$ converges.
Then, by the Series Linearity Theorem, $\sum\left[\frac{1}{c}\left(c a_{k}\right)\right]$ converges.
$\Longrightarrow \sum a_{k}$ converges \leftarrow CONTRADICTION!
Therefore, $\sum c a_{k}$ must diverge.
QED

BWOC \equiv "By Way Of Contradiction"

Arithmetic Series

Definition

An arithmetic series has the form $\sum(a k+b)$
Examples of arithmetic series:
$\sum_{k=1}^{\infty} k=1+2+3+4+5+\cdots$
$\sum_{k=1}^{\infty} 2 k=2+4+6+8+10+\cdots$
$\sum_{k=-1}^{\infty}(1-k)=2+1+0-1-2-\cdots$

Theorem

(Arithmetic Series Theorem)
The arithmetic series $\sum_{k=1}^{\infty}(a k+b)$ converges $\Longleftrightarrow a=b=0$

Arithmetic Series

Theorem

The arithmetic series $\sum_{k=1}^{\infty}(a k+b)$ converges $\Longleftrightarrow a=b=0$

PROOF:

(\Leftrightarrow) Suppose $a=b=0$. Then,
$\sum_{k=1}^{\infty}(a k+b)=\sum_{k=1}^{\infty} 0=0+0+0+0+\cdots=0 \Longrightarrow \sum_{k=1}^{\infty}(a k+b)$ converges.
(\Rightarrow) Suppose $\sum_{k=1}^{\infty}(a k+b)$ converges.
Then, the partial sum sequence $\left\{S_{n}\right\}$ converges, where
$S_{n}=\sum_{k=1}^{n}(a k+b)=a \sum_{k=1}^{n} k+\sum_{k=1}^{n} b=\frac{a n(n+1)}{2}+n b$
(Finite Sum Rules)

But $\lim _{n \rightarrow \infty} n=\lim _{n \rightarrow \infty} \frac{n(n+1)}{2}=\infty$, so $\left\{S_{n}\right\}$ converges only if $a=b=0$.
QED

Geometric Series

Definition

A geometric series has the form $\sum a r^{k}$, where $a \neq 0$ and $r \in \mathbb{R}$.
Examples of geometric series:
$\sum_{k=0}^{\infty} 2^{k}=1+2+4+8+16+\cdots$
$\sum_{k=0}^{\infty}(-2)^{k}=1-2+4-8+16-\cdots$
$\sum_{k=1}^{\infty}\left(\frac{1}{2}\right)^{k}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\cdots$

Theorem

(Geometric Series Theorem)
$|r|<1 \Longrightarrow$ geometric series $\sum_{k=0}^{\infty} a r^{k}$ converges and $\sum_{k=0}^{\infty} a r^{k}=\frac{a}{1-r}$

Geometric Series

Theorem

(Geometric Series Theorem)
$|r|<1 \Longrightarrow$ geometric series $\sum_{k=0}^{\infty} a r^{k}$ converges and $\sum_{k=0}^{\infty} a r^{k}=\frac{a}{1-r} \quad(a \neq 0)$

PROOF:

$\overline{S_{n}=a+a r+a r^{2}+\cdots+a r^{n-1} \Longrightarrow r S_{n}=a r+a r^{2}+a r^{3}+\cdots+a r^{n}, ~}$
$\Longrightarrow S_{n}-r S_{n}=\left(a+a r+a r^{2}+\cdots+a r^{n-1}\right)-\left(a r+a r^{2}+a r^{3}+\cdots+a r^{n}\right)$
$\Longrightarrow(1-r) S_{n}=a-a r^{n} \Longrightarrow S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$, where $\quad r \neq 1$
$|r|<1 \Longrightarrow \lim _{n \rightarrow \infty} r^{n}=0 \Longrightarrow \lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \frac{a\left(1-r^{n}\right)}{1-r}=\frac{a(1-0)}{1-r}=\frac{a}{1-r}$
$|r|>1 \Longrightarrow \lim _{n \rightarrow \infty}\left|r^{n}\right|=\infty \Longrightarrow \lim _{n \rightarrow \infty}\left|S_{n}\right|=\infty \Longrightarrow \sum_{k=0}^{\infty} a r^{k}$ diverges.
$r=-1 \Longrightarrow \sum_{k=0}^{\infty} a r^{k}=\sum_{k=0}^{\infty} a(-1)^{k}$ which diverges

Reindexing a Series

Recall the sum of a convergent geometric series:

$$
\sum_{k=0}^{\infty} a r^{k}=\frac{a}{1-r}
$$

QUESTION:

What if the index of a convergent geometric series does not start at zero??
ANSWER: Reindex the series:
$\sum_{k=-5}^{\infty}\left(\frac{1}{2}\right)^{k}=\left(\frac{1}{2}\right)^{-5}+\left(\frac{1}{2}\right)^{-4}+\left(\frac{1}{2}\right)^{-3}+\left(\frac{1}{2}\right)^{-2}+\left(\frac{1}{2}\right)^{-1}+\sum_{k=0}^{\infty}\left(\frac{1}{2}\right)^{k}$
$\sum_{k=3}^{\infty}\left(\frac{5}{7}\right)^{k}=-\left(\frac{5}{7}\right)^{0}-\left(\frac{5}{7}\right)^{1}-\left(\frac{5}{7}\right)^{2}+\sum_{k=0}^{\infty}\left(\frac{5}{7}\right)^{k}$

REMARK: Reindexing is used in solving certain differential equations.

Telescoping Series

Definition

A telescoping series has internal cancellation of terms in its partial sums.
Basic Forms of Telescoping Series (f is a function):

- $\sum[f(k+1)-f(k)]$
- $\sum[f(k)-f(k+1)]$
- $\sum[f(k)-f(k-1)]$
- $\sum[f(k-1)-f(k)]$

Telescoping Series Toolkit:

- Partial Fraction Decomposition (PFD)
- Properties of Logarithms
- Rationalizing Numerator
- Trig Identities

Telescoping Series

Given telescoping series $\sum_{k=1}^{\infty}[f(k+1)-f(k)]$, then its $n^{\text {th }}$ partial sum is $S_{n}=f(2)-f(1)+f(3)-f(2)+f(4)-f(3)+\cdots+f(n)-f(n-1)+f(n+1)-f(n)$
$\Longrightarrow S_{n}=f(n+1)-f(1)$
$\Longrightarrow \lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty}[f(n+1)-f(1)]=\lim _{n \rightarrow \infty}[f(n+1)]-f(1)$
Now, if sequence $\left\{S_{n}\right\}$ converges, then series $\sum_{k=1}^{\infty}[f(k+1)-f(k)]$ converges
$\Longrightarrow \sum_{k=1}^{\infty}[f(k+1)-f(k)]=\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty}[f(n+1)]-f(1)$

Fin.

