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Direct Comparison Test (DCT)

Theorem
(Direct Comparison Test)

0 ≤ ak ≤ ck AND
∑

ck converges =⇒
∑

ak converges

bk ≥ dk ≥ 0 AND
∑

dk diverges =⇒
∑

bk diverges

KEY IDEA: Bound a hard series with a series whose convergence is known.

DISADVANTAGE: Easy to pick the ”wrong” series to compare with, causing
the test to fail.
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Direct Comparison Test (DCT)

Theorem
(Direct Comparison Test)

0 ≤ ak ≤ ck AND
∑

ck converges =⇒
∑

ak converges

bk ≥ dk ≥ 0 AND
∑

dk diverges =⇒
∑

bk diverges

PROOF:
Let ak = f (k) and ck = F(k) for k ≥ N1 where N1 ∈ N.

Then, 0 ≤ ak ≤ ck for k ≥ N1 =⇒ 0 ≤ f (x) ≤ F(x) for x ≥ N1

Now,
∑

ck converges =⇒
∫ ∞

N1

F(x) dx < ∞ (by the Integral Test)

=⇒
∫ ∞

N1

f (x) dx ≤
∫ ∞

N1

F(x) dx < ∞ =⇒
∫ ∞

N1

f (x) dx < ∞

Hence,
∑

ak converges (by the Integral Test)

Josh Engwer (TTU) Positive Series: Comparison Tests 31 March 2014 3 / 12



Direct Comparison Test (DCT)

Theorem
(Direct Comparison Test)

0 ≤ ak ≤ ck AND
∑

ck converges =⇒
∑

ak converges

bk ≥ dk ≥ 0 AND
∑

dk diverges =⇒
∑

bk diverges

PROOF:
Let bk = G(k) and dk = g(k) for k ≥ N2 where N2 ∈ N.

Then, bk ≥ dk ≥ 0 for k ≥ N2 =⇒ G(x) ≥ g(x) ≥ 0 for x ≥ N2

Now,
∑

dk diverges =⇒
∫ ∞

N2

g(x) dx = ∞ (by the Integral Test)

=⇒
∫ ∞

N2

G(x) dx ≥
∫ ∞

N2

g(x) dx = ∞ =⇒
∫ ∞

N2

G(x) dx = ∞

Hence,
∑

bk diverges (by the Integral Test)

QED
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Useful Inequalities for the Direct Comparison Test

−1 ≤ cos x ≤ 1 −1 ≤ sin x ≤ 1 −π

2
< arctan x <

π

2
For x ∈ R: x2 ≥ 0, x4 ≥ 0, · · · , x2n ≥ 0, 2x > 0, ex > 0, xx ≥ 0
For x ≥ 0:

√
x ≥ 0, 3

√
x ≥ 0, 4

√
x ≥ 0, · · · , n

√
x ≥ 0, xp ≥ 0

For x ≥ 1:
√

x ≥ 1, 3
√

x ≥ 1, 4
√

x ≥ 1, · · · , n
√

x ≥ 1, xp ≥ 1
For x ≥ 1: log2 x ≥ 0, ln x ≥ 0, log x ≥ 0
A < B =⇒ −A > −B A > B =⇒ −A < −B
A ≤ B =⇒ −A ≥ −B A ≥ B =⇒ −A ≤ −B

A,M,m > 0 s.t. M > m =⇒ AM > Am and
A
M

<
A
m

A, x > 0 =⇒ A + x > A =⇒ 1
A + x

<
1
A

A > x > 0 =⇒ A − x < A =⇒ 1
A − x

>
1
A

f is positive & increasing on [A,B] AND 0 < A < B =⇒ 0 < f (A) < f (B)

f is positive & decreasing on [A,B] AND 0 < A < B =⇒ f (A) > f (B) > 0
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”Tower of Power”

Eventually (i.e. as x, k → ∞):

· · · ≤ ln (ln x) ≤ log100 x ≤ ln x ≤ log2 x ≤ 100
√

x ≤ 3
√

x ≤
√

x ≤ x ≤ x2 ≤ x100 ≤
2x ≤ ex ≤ 100x ≤ k! ≤ xx ≤ xxx ≤ · · ·

in other words....

Nested Log’s ≤ Log’s ≤ Roots ≤ Powers ≤ Exp’s ≤ Factorials ≤ Nested Exp’s
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A Note about Inequality Chains

Every inequality in an inequality chain must be pointing in same direction:

A ≤ B ≤ C ≤ D = E ≤ F ≤ G = H implies that A ≤ H
A < B ≤ C < D = E < F ≤ G = H implies that A < H
A < B < C < D = E < F < G = H implies that A < H

A = B ≥ C = D ≥ E ≥ F ≥ G ≥ H implies that A ≥ H
A = B ≥ C = D ≥ E > F ≥ G ≥ H implies that A > H
A = B > C = D > E > F > G > H implies that A > H

Otherwise, the inequality chain is useless:

A < B ≤ C > D = E < F implies nothing on how:

A and D are related
A and E are related
A and F are related
B and D are related
B and E are related
B and F are related
C and F are related
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Limit Comparison Test (LCT)

Theorem
(Limit Comparison Test)

Let
∑

ak,
∑

bk,
∑

ck,
∑

dk all be positive series. Then:

lim
k→∞

ak

ck
= 0 AND

∑
ck converges =⇒

∑
ak converges

lim
k→∞

ak

bk
= L ∈ (0,∞) =⇒

∑
ak and

∑
bk both converge or both diverge

lim
k→∞

ak

dk
= ∞ AND

∑
dk diverges =⇒

∑
ak diverges

KEY IDEA: Compare a series with a simpler series that ”looks like” it.

ADVANTAGE: Does not use inequalities & often works when DCT fails.

DISADVANTAGE: Some series are easy with DCT but hard with LCT.
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Limit Comparison Test (LCT)

Theorem
(Limit Comparison Test)

Let
∑

ak,
∑

bk,
∑

ck,
∑

dk all be positive series. Then:

lim
k→∞

ak

ck
= 0 AND

∑
ck converges =⇒

∑
ak converges

lim
k→∞

ak

bk
= L ∈ (0,∞) =⇒

∑
ak and

∑
bk both converge or both diverge

lim
k→∞

ak

dk
= ∞ AND

∑
dk diverges =⇒

∑
ak diverges

PROOF: Take Advanced Calculus.
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LCT: Simple Series to Compare with

Simple Convergent Series Simple Divergent Series

Geometric Series
∞∑

k=0

rk with |r| < 1 Geometric Series
∞∑

k=0

rk with |r| ≥ 1

p-series
∞∑

k=1

1
kp with p > 1 p-series

∞∑
k=1

1
kp with p ≤ 1
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A Word of Advice

One can argue that this is the hardest section involving Series Tests.
The key to picking the right series to compare with is experience.

Therefore, understand all the examples here, in the book, and in the HW.
It’s also advised to attempt some of the problems in the book.
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Fin

Fin.
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