Positive Series: Comparison Tests Calculus II

Josh Engwer

TTU

31 March 2014

Josh Engwer (TTU)

(Direct Comparison Test)

 $0 \le a_k \le c_k$ AND $\sum c_k$ converges $\implies \sum a_k$ converges

 $b_k \ge d_k \ge 0$ AND $\sum d_k$ diverges $\implies \sum b_k$ diverges

KEY IDEA: Bound a hard series with a series whose convergence is known.

<u>DISADVANTAGE</u>: Easy to pick the "wrong" series to compare with, causing the test to fail.

(Direct Comparison Test)

 $0 \le a_k \le c_k$ AND $\sum c_k$ converges $\implies \sum a_k$ converges $b_k \ge d_k \ge 0$ AND $\sum d_k$ diverges $\implies \sum b_k$ diverges

PROOF:

 $\overline{\text{Let } a_k} = f(k) \text{ and } c_k = F(k) \text{ for } k \ge N_1 \text{ where } N_1 \in \mathbb{N}.$ Then, $0 \le a_k \le c_k \text{ for } k \ge N_1 \implies 0 \le f(x) \le F(x) \text{ for } x \ge N_1$ Now, $\sum c_k \text{ converges } \Longrightarrow \int_{N_1}^{\infty} F(x) \, dx < \infty$ (by the Integral Test) $\implies \int_{N_1}^{\infty} f(x) \, dx \le \int_{N_1}^{\infty} F(x) \, dx < \infty \implies \int_{N_1}^{\infty} f(x) \, dx < \infty$

Hence, $\sum a_k$ converges (by the Integral Test)

(Direct Comparison Test)

 $0 \le a_k \le c_k$ AND $\sum c_k$ converges $\implies \sum a_k$ converges

 $b_k \ge d_k \ge 0$ AND $\sum d_k$ diverges $\implies \sum b_k$ diverges

PROOF:

Let $b_k = G(k)$ and $d_k = g(k)$ for $k \ge N_2$ where $N_2 \in \mathbb{N}$. Then, $b_k \ge d_k \ge 0$ for $k \ge N_2 \implies G(x) \ge g(x) \ge 0$ for $x \ge N_2$ Now, $\sum d_k$ diverges $\implies \int_{N_2}^{\infty} g(x) dx = \infty$ (by the Integral Test) $\implies \int_{N_2}^{\infty} G(x) dx \ge \int_{N_2}^{\infty} g(x) dx = \infty \implies \int_{N_2}^{\infty} G(x) dx = \infty$

Hence, $\sum b_k$ diverges (by the Integral Test) QED

Useful Inequalities for the Direct Comparison Test

•
$$-1 \le \cos x \le 1$$
 $-1 \le \sin x \le 1$ $-\frac{\pi}{2} < \arctan x < \frac{\pi}{2}$
• For $x \in \mathbb{R}$: $x^2 \ge 0, x^4 \ge 0, \cdots, x^{2n} \ge 0, 2^x > 0, e^x > 0, x^x \ge 0$
• For $x \ge 0$: $\sqrt{x} \ge 0, \sqrt[3]{x} \ge 0, \sqrt[4]{x} \ge 0, \cdots, \sqrt[n]{x} \ge 0, x^p \ge 0$
• For $x \ge 1$: $\sqrt{x} \ge 1, \sqrt[3]{x} \ge 1, \sqrt[4]{x} \ge 1, \cdots, \sqrt[n]{x} \ge 1, x^p \ge 1$
• For $x \ge 1$: $\log_2 x \ge 0, \ln x \ge 0, \log x \ge 0$
• $A < B \Longrightarrow -A > -B$ $A > B \Longrightarrow -A < -B$
 $A \le B \Longrightarrow -A \ge -B$ $A \ge B \Longrightarrow -A \le -B$
• $A, M, m > 0$ s.t. $M > m \Longrightarrow AM > Am$ and $\frac{A}{M} < \frac{A}{m}$
• $A, x > 0 \Longrightarrow A + x > A \Longrightarrow \frac{1}{A + x} < \frac{1}{A}$
• $A > x > 0 \Longrightarrow A - x < A \Longrightarrow \frac{1}{A - x} > \frac{1}{A}$
• f is positive & increasing on $[A, B]$ AND $0 < A < B \Longrightarrow 0 < f(A) < f(B)$

• f is positive & decreasing on [A, B] AND $0 < A < B \implies f(A) > f(B) > 0$

Eventually (i.e. as $x, k \to \infty$):

 $\cdots \leq \ln (\ln x) \leq \log_{100} x \leq \ln x \leq \log_2 x \leq \sqrt[100]{x} \leq \sqrt[3]{x} \leq \sqrt{x} \leq x \leq x^2 \leq x^{100} \leq 2^x \leq e^x \leq 100^x \leq k! \leq x^x \leq x^{x^x} \leq \cdots$

in other words

Nested Log's \leq Log's \leq Roots \leq Powers \leq Exp's \leq Factorials \leq Nested Exp's

A Note about Inequality Chains

Every inequality in an inequality chain must be pointing in same direction:

$A \le B \le C \le D = E \le F \le G = H$	implies that	$A \leq H$
$A < B \le C < D = E < F \le G = H$	implies that	A < H
A < B < C < D = E < F < G = H	implies that	A < H
$A = B \ge C = D \ge E \ge F \ge G \ge H$	implies that	$A \ge H$
$A = B \ge C = D \ge E > F \ge G \ge H$	implies that	A > H
A = B > C = D > E > F > G > H	implies that	A > H

Otherwise, the inequality chain is useless:

 $A < B \le C > D = E < F$ implies nothing on how:

A and D are related A and E are related A and F are related B and D are related B and E are related B and F are related C and F are related

(Limit Comparison Test) Let $\sum a_k, \sum b_k, \sum c_k, \sum d_k$ all be positive series. Then: $\lim_{k \to \infty} \frac{a_k}{c_k} = 0$ AND $\sum c_k$ converges $\implies \sum a_k$ converges $\lim_{k \to \infty} \frac{a_k}{b_k} = L \in (0, \infty) \implies \sum a_k$ and $\sum b_k$ both converge or both diverge $\lim_{k \to \infty} \frac{a_k}{d_k} = \infty$ AND $\sum d_k$ diverges $\implies \sum a_k$ diverges

<u>KEY IDEA</u>: Compare a series with a simpler series that "looks like" it. <u>ADVANTAGE</u>: Does not use inequalities & often works when DCT fails. <u>DISADVANTAGE</u>: Some series are easy with DCT but hard with LCT.

(Limit Comparison Test) Let $\sum a_k, \sum b_k, \sum c_k, \sum d_k$ all be positive series. Then: $\lim_{k \to \infty} \frac{a_k}{c_k} = 0$ AND $\sum c_k$ converges $\implies \sum a_k$ converges $\lim_{k \to \infty} \frac{a_k}{b_k} = L \in (0, \infty) \implies \sum a_k$ and $\sum b_k$ both converge or both diverge $\lim_{k \to \infty} \frac{a_k}{d_k} = \infty$ AND $\sum d_k$ diverges $\implies \sum a_k$ diverges

PROOF: Take Advanced Calculus.

- One can argue that this is the hardest section involving Series Tests.
- The key to picking the right series to compare with is experience.
 - Therefore, understand all the examples here, in the book, and in the HW.
 - It's also advised to attempt some of the problems in the book.

Fin.