Positive Series: Ratio Test \& Root Test

Calculus II

Josh Engwer

TTU
02 April 2014

Ratio Test

Theorem

(Ratio Test)

$$
\begin{gathered}
\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}<1 \Longrightarrow \text { positive series } \sum a_{k} \text { converges } \\
\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}>1 \Longrightarrow \text { positive series } \sum a_{k} \text { diverges } \\
\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=\infty \Longrightarrow \text { positive series } \sum a_{k} \text { diverges } \\
\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=1 \text { or DNE } \Longrightarrow \text { Ratio Test fails }
\end{gathered}
$$

Works nicely with:

- factorials (e.g. k !)
- simple powers (e.g. k^{3})
- simple exponentials (e.g. 2^{k})
- product chains (e.g. $1 \cdot 3 \cdot 5 \cdots(2 k-1))$.

Ratio Test

Theorem

(Ratio Test)

$$
\begin{gathered}
\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}<1 \Longrightarrow \text { positive series } \sum a_{k} \text { converges } \\
\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}>1 \Longrightarrow \text { positive series } \sum a_{k} \text { diverges } \\
\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=\infty \Longrightarrow \text { positive series } \sum a_{k} \text { diverges } \\
\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=1 \text { or DNE } \Longrightarrow \text { Ratio Test fails }
\end{gathered}
$$

- Useless with most trig fens $\mathrm{b} / \mathrm{c}: \lim _{k \rightarrow \infty} \sin k=\mathrm{DNE} \quad \lim _{k \rightarrow \infty} \cos k=\mathrm{DNE}$
- Tedious to use with most rational functions of polynomials.
e.g. $a_{k}=\frac{k^{3}-2 k^{2}+k+1}{k^{4}+k^{3}+k^{2}+2}$

Ratio Test

Theorem

(Ratio Test)

$$
\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}<1 \Longrightarrow \text { positive series } \sum a_{k} \text { converges }
$$

PROOF:

See the textbook for the case when $\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}<1$.

Ratio Test

Theorem

(Ratio Test)

$$
\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}>1 \Longrightarrow \text { positive series } \sum a_{k} \text { diverges }
$$

PROOF:

Suppose $\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}>1$. Then
Sequence $\left\{a_{n}\right\}$ is positive, unbounded, and eventually increasing
\Longrightarrow Partial Sum Sequence $\left\{S_{n}\right\}$ is positive, unbounded, and increasing
$\Longrightarrow \lim _{n \rightarrow \infty} S_{n}=\infty$
\Longrightarrow Positive Series $\sum a_{k}$ diverges.

Ratio Test

Theorem

(Ratio Test)

$$
\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=\infty \Longrightarrow \text { positive series } \sum a_{k} \text { diverges }
$$

PROOF:

Suppose $\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=\infty$. Then
Sequence $\left\{a_{n}\right\}$ is positive, unbounded, and eventually increasing
\Longrightarrow Partial Sum Sequence $\left\{S_{n}\right\}$ is positive, unbounded, and increasing
$\Longrightarrow \lim _{n \rightarrow \infty} S_{n}=\infty$
\Longrightarrow Positive Series $\sum a_{k}$ diverges.

Ratio Test

Theorem

(Ratio Test)

$$
\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=1 \text { or DNE } \Longrightarrow \text { Ratio Test fails }
$$

PROOF:

For the case that $\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=1$, it suffices to observe that
$\sum_{k=1}^{\infty} \frac{1}{k}$ diverges yet $\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=\lim _{k \rightarrow \infty} \frac{\frac{1}{k+1}}{\frac{1}{k}}=\lim _{k \rightarrow \infty} \frac{k}{k+1}=1$
$\sum_{k=1}^{\infty} \frac{1}{k^{2}}$ converges yet $\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=\lim _{k \rightarrow \infty} \frac{\frac{1}{(k+1)^{2}}}{\frac{1}{k^{2}}}=\lim _{k \rightarrow \infty} \frac{k^{2}}{(k+1)^{2}}=1$
Therefore, the Ratio Test is inconclusive when $\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=1$

Ratio Test

Theorem

(Ratio Test)

$$
\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=1 \text { or DNE } \Longrightarrow \quad \text { Ratio Test fails }
$$

PROOF:

For the case that $\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=\mathrm{DNE}$, it suffices to observe that
$\sum_{k=1}^{\infty}(2+\sin k)$ diverges yet $\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=\lim _{k \rightarrow \infty} \frac{2+\sin (k+1)}{2+\sin k}=$ DNE
$\sum_{k=1}^{\infty} \frac{|\sin k|}{k^{2}}$ converges yet $\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=\lim _{k \rightarrow \infty} \frac{\frac{|\sin (k+1)|}{(k+1)^{2}}}{\frac{|\sin k|}{k^{2}}}=\lim _{k \rightarrow \infty} \frac{|\sin (k+1)|}{|\sin k|}=$ DNE
Therefore, the Ratio Test is inconclusive when $\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=$ DNE
QED

Ratio Test (Examples)

WORKED EXAMPLE: Test the series $\sum_{k=1}^{\infty} \frac{1}{k!}$ for convergence.
$\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=\lim _{k \rightarrow \infty} \frac{\frac{1}{(k+1)!}}{\frac{1}{k!}}=\lim _{k \rightarrow \infty} \frac{k!}{(k+1)!}=\lim _{k \rightarrow \infty} \frac{k!}{(k+1) k!}=\lim _{k \rightarrow \infty} \frac{1}{k+1}=0<1$
Therefore, by the Ratio Test, series $\sum_{k=1}^{\infty} \frac{1}{k!}$ Converges
WORKED EXAMPLE: Test the series $\sum_{k=-9}^{\infty} k!$ for convergence.
$\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=\lim _{k \rightarrow \infty} \frac{(k+1)!}{k!}=\lim _{k \rightarrow \infty} \frac{(k+1) k!}{k!}=\lim _{k \rightarrow \infty}(k+1)=\infty$
Therefore, by the Ratio Test, series $\sum_{k=-9}^{\infty} k!$ diverges

Root Test

Theorem

$$
\begin{gathered}
\lim _{k \rightarrow \infty} \sqrt[k]{a_{k}}<1 \Longrightarrow \text { positive series } \sum a_{k} \text { converges } \\
\lim _{k \rightarrow \infty} \sqrt[k]{a_{k}}>1 \Longrightarrow \text { positive series } \sum a_{k} \text { diverges } \\
\lim _{k \rightarrow \infty} \sqrt[k]{a_{k}}=\infty \Longrightarrow \text { positive series } \sum a_{k} \text { diverges } \\
\lim _{k \rightarrow \infty} \sqrt[k]{a_{k}}=1 \text { or DNE } \Longrightarrow \text { Root Test fails }
\end{gathered}
$$

Works nicely with:

- heavy powers of k (e.g. $[f(k)]^{k}$, where f is a continuous fcn)
- heavy exponentials $\left(\right.$ e.g. $\left.9^{k^{2}}, 7^{\ln k}, 3^{\sin k}, \ldots\right)$.

Useless with:

- factorials (e.g. k !).

Root Test

Theorem

$$
\begin{gathered}
\lim _{k \rightarrow \infty} \sqrt[k / a_{k}]{ }<1 \Longrightarrow \text { positive series } \sum a_{k} \text { converges } \\
\lim _{k \rightarrow \infty} \sqrt[k]{a_{k}}>1 \Longrightarrow \text { positive series } \sum a_{k} \text { diverges } \\
\lim _{k \rightarrow \infty} \sqrt[k]{a_{k}}=\infty \Longrightarrow \text { positive series } \sum a_{k} \text { diverges } \\
\lim _{k \rightarrow \infty} \sqrt[k / a_{k}]{ }=1 \text { or DNE } \Longrightarrow \text { Root Test fails }
\end{gathered}
$$

PROOF:

Take Advanced Calculus.

Root Test (Examples)

WORKED EXAMPLE: Test the series $\sum_{k=1}^{\infty} \frac{1}{(k+2)^{k}}$ for convergence.
$\lim _{k \rightarrow \infty} \sqrt[k]{a_{k}}=\lim _{k \rightarrow \infty} \sqrt[k]{\frac{1}{(k+2)^{k}}}=\lim _{k \rightarrow \infty}\left[\frac{1}{(k+2)^{k}}\right]^{1 / k}=\lim _{k \rightarrow \infty} \frac{1}{k+2}=0<1$
Therefore, by the Root Test, series $\sum_{k=1}^{\infty} \frac{1}{(k+2)^{k}} \quad$ Converges
WORKED EXAMPLE: Test the series $\sum_{k=6}^{\infty} \pi^{-k / 2} k^{5 k}$ for convergence.
$\lim _{k \rightarrow \infty} \sqrt[k]{a_{k}}=\lim _{k \rightarrow \infty}\left[\pi^{-k / 2} k^{5 k}\right]^{1 / k}=\lim _{k \rightarrow \infty} \pi^{-1 / 2} k^{5}=\lim _{k \rightarrow \infty} \frac{k^{5}}{\sqrt{\pi}}=\infty>1$
Therefore, by the Root Test, series $\sum_{k=6}^{\infty} \pi^{-k / 2} k^{5 k}$ diverges

Relationship between the Ratio Test \& Root Test

Typically, the Ratio Test \& Root Test either both succeed or both fail.
However, there are series where Ratio Test fails but Root Test succeeds:
WORKED EXAMPLE: Test the series $\sum_{k=0}^{\infty} \frac{1}{2^{k+(-1)^{k}}}$ for convergence.
Expand the series: $\sum_{k=0}^{\infty} \frac{1}{2^{k+(-1)^{k}}}=\frac{1}{2}+1+\frac{1}{8}+\frac{1}{4}+\frac{1}{32}+\frac{1}{16}+\frac{1}{128}+\frac{1}{64}+\cdots$
Then, $\frac{a_{k+1}}{a_{k}}=\left\{\begin{array}{cl}2 & , \text { if } k \text { is even } \\ 1 / 8 & , \text { if } k \text { is odd }\end{array} \Longrightarrow\left\{\frac{a_{k+1}}{a_{k}}\right\}_{k=0}^{\infty}=\left(2, \frac{1}{8}, 2, \frac{1}{8}, 2, \frac{1}{8}, \cdots\right)\right.$
$\Longrightarrow\left\{\frac{a_{k+1}}{a_{k}}\right\}_{k=0}^{\infty}$ oscillates $\Longrightarrow \lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=\mathrm{DNE} \Longrightarrow$ Ratio Test fails
However,
$\lim _{k \rightarrow \infty} \sqrt[k]{a_{k}}=\lim _{k \rightarrow \infty} \frac{1}{2^{\left[k+(-1)^{k}\right] / k}}=\lim _{k \rightarrow \infty} \frac{1}{2^{1+(-1)^{k} / k}}=\frac{1}{2} \lim _{k \rightarrow \infty} \frac{1}{2^{(-1)^{k} / k}}=\frac{1}{2}<1$
\therefore by the Root Test, Series Converges

Be Careful with Factorial Expressions

Definition

$$
k!:=k(k-1)(k-2) \cdots(3)(2)(1) \quad 0!:=1
$$

CAUTION:

- $(k+3)!\neq k!+3, \quad(k+3)!\neq k!+3!$
- Rather, $(k+3)!=(k+3)(k+2)(k+1) k$!
- $(3 k)!\neq 3 k!$, $(3 k)!\neq 3!k!$
- Rather, $(3 k)!=(3 k)(3 k-1)(3 k-2)(3 k-3) \cdots(k+2)(k+1) k!$
- $k!k!\neq\left(k^{2}\right)$!
- Rather, $k!k!=(k!)^{2}$

Fin.

